Impact of Weak Vibration Generated by a Refrigerator on Protein Aggregation.

IF 5 3区 医学 Q1 PHARMACOLOGY & PHARMACY AAPS Journal Pub Date : 2025-01-27 DOI:10.1208/s12248-025-01014-z
Shinji Kizuki, Zekun Wang, Satoru Yamauchi, Tetsuo Torisu, Susumu Uchiyama
{"title":"Impact of Weak Vibration Generated by a Refrigerator on Protein Aggregation.","authors":"Shinji Kizuki, Zekun Wang, Satoru Yamauchi, Tetsuo Torisu, Susumu Uchiyama","doi":"10.1208/s12248-025-01014-z","DOIUrl":null,"url":null,"abstract":"<p><p>Protein aggregates and particles in biopharmaceuticals can induce adverse immune responses in patients. Thus, suppression of the formation of protein aggregates and particles is important for the successful development of therapeutic proteins. Mechanical stresses, including agitation, are widely recognized as stress factors that generate protein aggregates and particles. However, although refrigerators and storage chambers generate weak vibration, there have been no studies of the impact of such weak vibration on aggregate and particle formation during storage. In this study, monomer loss and aggregate formation of a CTLA4-Ig were evaluated during storage in a refrigerator (having a vibration acceleration less than 0.006 G) with or without three vibration isolators. The vibration isolators reduced the vibration acceleration, thereby decreasing the rate of monomer loss and nanometer-sized aggregate formation. The increase in the aggregation rate due to the weak vibration was not mitigated by adding poloxamer 188 or eliminating the air-liquid interface, which are processes known to be effective in preventing protein aggregation due to mechanical stresses. Thus, reducing vibration should be an effective way to mitigate the risk of aggregate formation.</p>","PeriodicalId":50934,"journal":{"name":"AAPS Journal","volume":"27 1","pages":"34"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1208/s12248-025-01014-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Protein aggregates and particles in biopharmaceuticals can induce adverse immune responses in patients. Thus, suppression of the formation of protein aggregates and particles is important for the successful development of therapeutic proteins. Mechanical stresses, including agitation, are widely recognized as stress factors that generate protein aggregates and particles. However, although refrigerators and storage chambers generate weak vibration, there have been no studies of the impact of such weak vibration on aggregate and particle formation during storage. In this study, monomer loss and aggregate formation of a CTLA4-Ig were evaluated during storage in a refrigerator (having a vibration acceleration less than 0.006 G) with or without three vibration isolators. The vibration isolators reduced the vibration acceleration, thereby decreasing the rate of monomer loss and nanometer-sized aggregate formation. The increase in the aggregation rate due to the weak vibration was not mitigated by adding poloxamer 188 or eliminating the air-liquid interface, which are processes known to be effective in preventing protein aggregation due to mechanical stresses. Thus, reducing vibration should be an effective way to mitigate the risk of aggregate formation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
AAPS Journal
AAPS Journal 医学-药学
CiteScore
7.80
自引率
4.40%
发文量
109
审稿时长
1 months
期刊介绍: The AAPS Journal, an official journal of the American Association of Pharmaceutical Scientists (AAPS), publishes novel and significant findings in the various areas of pharmaceutical sciences impacting human and veterinary therapeutics, including: · Drug Design and Discovery · Pharmaceutical Biotechnology · Biopharmaceutics, Formulation, and Drug Delivery · Metabolism and Transport · Pharmacokinetics, Pharmacodynamics, and Pharmacometrics · Translational Research · Clinical Evaluations and Therapeutic Outcomes · Regulatory Science We invite submissions under the following article types: · Original Research Articles · Reviews and Mini-reviews · White Papers, Commentaries, and Editorials · Meeting Reports · Brief/Technical Reports and Rapid Communications · Regulatory Notes · Tutorials · Protocols in the Pharmaceutical Sciences In addition, The AAPS Journal publishes themes, organized by guest editors, which are focused on particular areas of current interest to our field.
期刊最新文献
Impact of Weak Vibration Generated by a Refrigerator on Protein Aggregation. Evaluating the Immunogenicity Risk of Protein Therapeutics by Augmenting T Cell Epitope Prediction with Clinical Factors. Gastrointestinal Bile Salt Concentrations in Healthy Adults Under Fasted and Fed Conditions: A Systematic Review and Meta-Analysis for Mechanistic Physiologically-Based Pharmacokinetic (PBPK) Modelling. Operating Characteristics of the Simulated Healthy Participant Approach in Impaired Clearance Studies. Cannabidiol and Hydroxypropyl-β-Cyclodextrin for the Development of Deflated Spherical-Shaped Inhalable Powder.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1