Dan Sun, Gajaba Ellepola, Jayampathi Herath, Hong Liu, Yewei Liu, Kris Murray, Madhava Meegaskumbura
{"title":"Climatically Specialized Lineages of Batrachochytrium dendrobatidis, and its Likely Asian Origins.","authors":"Dan Sun, Gajaba Ellepola, Jayampathi Herath, Hong Liu, Yewei Liu, Kris Murray, Madhava Meegaskumbura","doi":"10.1007/s10393-025-01698-x","DOIUrl":null,"url":null,"abstract":"<p><p>Chytridiomycosis is a wildlife disease that has caused significant declines in amphibian populations and species extinctions worldwide. Asia, where the causal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamndrivorans (Bsal) originated, has not witnessed mass die-offs. It is hypothesized that Asian amphibians may have evolved immunity to clinical Batrachochytrium infection, but this has not been explored in depth due to limited knowledge of endemic lineages and infection patterns. We investigated Bd's genetic diversity and infection patterns in south China's Guangxi region using the internal transcribed spacer (ITS) marker and nested PCR. Across the 17 forest sites studied (N = 1088 individuals; 1012 adults and 76 tadpoles), the overall prevalence of Bd infection was 4.74% in adult individuals and 5.26% in tadpoles. We found seven new haplotypes, four of which were closely related to the BdASIA-1 lineage from South Korea. The most prevalent haplotype (genetically similar to BdASIA-3) was found in 11 out of 15 infected species, including a salamander with non-lethal skin lesions. A generalized linear model of our environmental data indicates that Bd infection is correlated with mean temperature of the warmest quarter and elevation, with higher infection prevalence associated with lower temperature and relatively higher elevation in southern China. Our findings suggest significant undiscovered genetic diversity of Asian Bd lineages in this region. Longer-term studies are required to further investigate Bd diversity, prevalence, seasonality, and impact on native species and populations in Southern China and across the region of origin in Asia.</p>","PeriodicalId":51027,"journal":{"name":"Ecohealth","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohealth","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10393-025-01698-x","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chytridiomycosis is a wildlife disease that has caused significant declines in amphibian populations and species extinctions worldwide. Asia, where the causal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamndrivorans (Bsal) originated, has not witnessed mass die-offs. It is hypothesized that Asian amphibians may have evolved immunity to clinical Batrachochytrium infection, but this has not been explored in depth due to limited knowledge of endemic lineages and infection patterns. We investigated Bd's genetic diversity and infection patterns in south China's Guangxi region using the internal transcribed spacer (ITS) marker and nested PCR. Across the 17 forest sites studied (N = 1088 individuals; 1012 adults and 76 tadpoles), the overall prevalence of Bd infection was 4.74% in adult individuals and 5.26% in tadpoles. We found seven new haplotypes, four of which were closely related to the BdASIA-1 lineage from South Korea. The most prevalent haplotype (genetically similar to BdASIA-3) was found in 11 out of 15 infected species, including a salamander with non-lethal skin lesions. A generalized linear model of our environmental data indicates that Bd infection is correlated with mean temperature of the warmest quarter and elevation, with higher infection prevalence associated with lower temperature and relatively higher elevation in southern China. Our findings suggest significant undiscovered genetic diversity of Asian Bd lineages in this region. Longer-term studies are required to further investigate Bd diversity, prevalence, seasonality, and impact on native species and populations in Southern China and across the region of origin in Asia.
期刊介绍:
EcoHealth aims to advance research, practice, and knowledge integration at the interface of ecology and health by publishing high quality research and review articles that address and profile new ideas, developments, and programs. The journal’s scope encompasses research that integrates concepts and theory from many fields of scholarship (including ecological, social and health sciences, and the humanities) and draws upon multiple types of knowledge, including those of relevance to practice and policy. Papers address integrated ecology and health challenges arising in public health, human and veterinary medicine, conservation and ecosystem management, rural and urban development and planning, and other fields that address the social-ecological context of health. The journal is a central platform for fulfilling the mission of the EcoHealth Alliance to strive for sustainable health of people, domestic animals, wildlife, and ecosystems by promoting discovery, understanding, and transdisciplinarity.
The journal invites substantial contributions in the following areas:
One Health and Conservation Medicine
o Integrated research on health of humans, wildlife, livestock and ecosystems
o Research and policy in ecology, public health, and agricultural sustainability
o Emerging infectious diseases affecting people, wildlife, domestic animals, and plants
o Research and practice linking human and animal health and/or social-ecological systems
o Anthropogenic environmental change and drivers of disease emergence in humans, wildlife, livestock and ecosystems
o Health of humans and animals in relation to terrestrial, freshwater, and marine ecosystems
Ecosystem Approaches to Health
o Systems thinking and social-ecological systems in relation to health
o Transdiiplinary approaches to health, ecosystems and society.