Polarization optical coherence tomography optoretinography: verifying light-induced photoreceptor outer segment shrinkage and subretinal space expansion.

IF 4.8 2区 医学 Q1 NEUROSCIENCES Neurophotonics Pub Date : 2025-01-01 Epub Date: 2025-01-27 DOI:10.1117/1.NPh.12.1.015005
Shaiban Ahmed, Taeyoon Son, Guangying Ma, Xincheng Yao
{"title":"Polarization optical coherence tomography optoretinography: verifying light-induced photoreceptor outer segment shrinkage and subretinal space expansion.","authors":"Shaiban Ahmed, Taeyoon Son, Guangying Ma, Xincheng Yao","doi":"10.1117/1.NPh.12.1.015005","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Stimulus-evoked intrinsic optical signal (IOS) changes in retinal photoreceptors are critical for functional optoretinography (ORG). Optical coherence tomography (OCT), with its depth-resolved imaging capability, has been actively explored for IOS imaging of retinal photoreceptors. However, recent OCT studies have reported conflicting results regarding light-induced changes in the photoreceptor outer segments (OSs), with both elongation and shrinkage being observed. These discrepancies may stem from the difficulty in reliably identifying OS boundaries, particularly the inner segment/outer segment (IS/OS) junction and OS tip, as well as potential confusion with subretinal space dynamics. Gaining a better understanding of these light-induced OS changes is essential for accurate interpretation of ORG measurements and for optimizing IOS imaging systems to enhance sensitivity.</p><p><strong>Aim: </strong>We aim to develop a method for the reliable identification of OS boundaries and to verify light-induced photoreceptor OS shrinkage and subretinal space expansion.</p><p><strong>Approach: </strong>We employed a polarization-resolved full-field swept-source optical coherence tomography system capable of sequentially capturing parallel-polarization and cross-polarization OCT signals. The parallel-polarization mode is optimized to detect ballistically reflected photons from well-defined retinal boundaries, such as the IS/OS junction and the photoreceptor tips, whereas cross-polarization primarily captures multiply scattered photons. This differentiation enables parallel-polarization OCT to minimize the interference from scattered photons, enhancing the precision of OCT band quantification.</p><p><strong>Results: </strong>Parallel-polarization OCT revealed photoreceptor OS shrinkage and subretinal space expansion in light conditions compared with dark conditions. Moreover, the overall outer retinal length appeared to swell under light. These observations were consistently confirmed in four healthy adult human subjects.</p><p><strong>Conclusions: </strong>Parallel-polarization OCT provides a reliable method for identifying the IS/OS junction and OS tip, confirming light-induced photoreceptor OS shrinkage and subretinal space expansion.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"12 1","pages":"015005"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.12.1.015005","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Stimulus-evoked intrinsic optical signal (IOS) changes in retinal photoreceptors are critical for functional optoretinography (ORG). Optical coherence tomography (OCT), with its depth-resolved imaging capability, has been actively explored for IOS imaging of retinal photoreceptors. However, recent OCT studies have reported conflicting results regarding light-induced changes in the photoreceptor outer segments (OSs), with both elongation and shrinkage being observed. These discrepancies may stem from the difficulty in reliably identifying OS boundaries, particularly the inner segment/outer segment (IS/OS) junction and OS tip, as well as potential confusion with subretinal space dynamics. Gaining a better understanding of these light-induced OS changes is essential for accurate interpretation of ORG measurements and for optimizing IOS imaging systems to enhance sensitivity.

Aim: We aim to develop a method for the reliable identification of OS boundaries and to verify light-induced photoreceptor OS shrinkage and subretinal space expansion.

Approach: We employed a polarization-resolved full-field swept-source optical coherence tomography system capable of sequentially capturing parallel-polarization and cross-polarization OCT signals. The parallel-polarization mode is optimized to detect ballistically reflected photons from well-defined retinal boundaries, such as the IS/OS junction and the photoreceptor tips, whereas cross-polarization primarily captures multiply scattered photons. This differentiation enables parallel-polarization OCT to minimize the interference from scattered photons, enhancing the precision of OCT band quantification.

Results: Parallel-polarization OCT revealed photoreceptor OS shrinkage and subretinal space expansion in light conditions compared with dark conditions. Moreover, the overall outer retinal length appeared to swell under light. These observations were consistently confirmed in four healthy adult human subjects.

Conclusions: Parallel-polarization OCT provides a reliable method for identifying the IS/OS junction and OS tip, confirming light-induced photoreceptor OS shrinkage and subretinal space expansion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
期刊最新文献
Viscocohesive hyaluronan gel enhances stability of intravital multiphoton imaging with subcellular resolution. Zika virus encephalitis causes transient reduction of functional cortical connectivity. Early changes in spatiotemporal dynamics of remapped circuits and global networks predict functional recovery after stroke in mice. Distribution of spine classes shows intra-neuronal dendritic heterogeneity in mouse cortex. Expansion microscopy reveals neural circuit organization in genetic animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1