Increased interferon I signaling, DNA damage response and evidence of T-cell exhaustion in a patient with combined interferonopathy (Aicardi-Goutières Syndrome, AGS) and cohesinopathy (Cornelia de Lange Syndrome, CdLS).

IF 2.8 3区 医学 Q1 PEDIATRICS Pediatric Rheumatology Pub Date : 2025-01-27 DOI:10.1186/s12969-024-01050-7
Sorina Boiu, Nikolaos Paschalidis, George Sentis, Theodora Manolakou, Andrianos Nezos, Manolis Gialitakis, Maria Grigoriou, Erato Atsali, Melpomeni Giorgi, Argirios Ntinopoulos, Clio Mavragani, Periklis Makrythanasis, Dimitrios T Boumpas, Aggelos Banos
{"title":"Increased interferon I signaling, DNA damage response and evidence of T-cell exhaustion in a patient with combined interferonopathy (Aicardi-Goutières Syndrome, AGS) and cohesinopathy (Cornelia de Lange Syndrome, CdLS).","authors":"Sorina Boiu, Nikolaos Paschalidis, George Sentis, Theodora Manolakou, Andrianos Nezos, Manolis Gialitakis, Maria Grigoriou, Erato Atsali, Melpomeni Giorgi, Argirios Ntinopoulos, Clio Mavragani, Periklis Makrythanasis, Dimitrios T Boumpas, Aggelos Banos","doi":"10.1186/s12969-024-01050-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Type I interferonopathies including Aicardi-Goutiéres Syndrome (AGS) represent a heterogeneous group of clinical phenotypes. Herein, we present a Case with combined AGS and Cornelia de Lange Syndrome (CdLS)-a cohesinopathy-with comprehensive analysis of the immune and genomic abnormalities.</p><p><strong>Case and methods: </strong>A 20-year old man presented with chilblain lesions and resorption of distal phalanges of fingers and toes, somatic and psychomotor retardation, microcephaly, synophrys, hearing losing and other aberrancies consistent with the phenotype of CdLS. We used whole exome sequencing to genetically map the associated mutations and performed transcriptome profiling and enrichment analysis in CD14<sup>+</sup> monocytes of the patient and immune phenotyping by mass cytometry (CyToF), comparing to healthy individuals and lupus patients as disease controls. DNA damage response was assayed by confocal microscopy in the peripheral blood of this patient.</p><p><strong>Results: </strong>Next generation exome sequencing confirmed a homozygous SAMHD1 gene mutation and a hemizygous non-synonymous mutation on SMC1A gene, responsible for the AGS and CdLS, respectively. Transcriptome profiling of CD14<sup>+</sup> monocytes of the patient showed enrichment of type I IFN signaling and enhanced DNA damage response pathway. Broad immune phenotype of the peripheral blood of the patient revealed absence of activated T cell populations, increased frequency of NK cells and plasmablasts and enhanced granulocytic lineage. Further analysis suggested activation of the ATM branch of DNA damage response and increased apoptosis in the periphery of the patient.</p><p><strong>Conclusions: </strong>A rare case of a patient bearing two genetic lesions (responsible for AGS/CdLS syndromes) exhibits distinctive features of genomic damage and interferon responses. Immune phenotype revealed granulocytic skewing and absence of activated T cells compatible with chronic antigenic stimulation and/or homing of these cells at sites of inflammation.</p>","PeriodicalId":54630,"journal":{"name":"Pediatric Rheumatology","volume":"23 1","pages":"11"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Rheumatology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12969-024-01050-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Type I interferonopathies including Aicardi-Goutiéres Syndrome (AGS) represent a heterogeneous group of clinical phenotypes. Herein, we present a Case with combined AGS and Cornelia de Lange Syndrome (CdLS)-a cohesinopathy-with comprehensive analysis of the immune and genomic abnormalities.

Case and methods: A 20-year old man presented with chilblain lesions and resorption of distal phalanges of fingers and toes, somatic and psychomotor retardation, microcephaly, synophrys, hearing losing and other aberrancies consistent with the phenotype of CdLS. We used whole exome sequencing to genetically map the associated mutations and performed transcriptome profiling and enrichment analysis in CD14+ monocytes of the patient and immune phenotyping by mass cytometry (CyToF), comparing to healthy individuals and lupus patients as disease controls. DNA damage response was assayed by confocal microscopy in the peripheral blood of this patient.

Results: Next generation exome sequencing confirmed a homozygous SAMHD1 gene mutation and a hemizygous non-synonymous mutation on SMC1A gene, responsible for the AGS and CdLS, respectively. Transcriptome profiling of CD14+ monocytes of the patient showed enrichment of type I IFN signaling and enhanced DNA damage response pathway. Broad immune phenotype of the peripheral blood of the patient revealed absence of activated T cell populations, increased frequency of NK cells and plasmablasts and enhanced granulocytic lineage. Further analysis suggested activation of the ATM branch of DNA damage response and increased apoptosis in the periphery of the patient.

Conclusions: A rare case of a patient bearing two genetic lesions (responsible for AGS/CdLS syndromes) exhibits distinctive features of genomic damage and interferon responses. Immune phenotype revealed granulocytic skewing and absence of activated T cells compatible with chronic antigenic stimulation and/or homing of these cells at sites of inflammation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Pediatric Rheumatology
Pediatric Rheumatology PEDIATRICS-RHEUMATOLOGY
CiteScore
4.10
自引率
8.00%
发文量
95
审稿时长
>12 weeks
期刊介绍: Pediatric Rheumatology is an open access, peer-reviewed, online journal encompassing all aspects of clinical and basic research related to pediatric rheumatology and allied subjects. The journal’s scope of diseases and syndromes include musculoskeletal pain syndromes, rheumatic fever and post-streptococcal syndromes, juvenile idiopathic arthritis, systemic lupus erythematosus, juvenile dermatomyositis, local and systemic scleroderma, Kawasaki disease, Henoch-Schonlein purpura and other vasculitides, sarcoidosis, inherited musculoskeletal syndromes, autoinflammatory syndromes, and others.
期刊最新文献
Exploring the clinical profiles and management of juvenile dermatomyositis in Africa: a survey of African rheumatology care providers. Increased interferon I signaling, DNA damage response and evidence of T-cell exhaustion in a patient with combined interferonopathy (Aicardi-Goutières Syndrome, AGS) and cohesinopathy (Cornelia de Lange Syndrome, CdLS). Joint fluid multi-omics improves diagnostic confidence during evaluation of children with presumed septic arthritis. A qualitative study exploring experiences of treatment in paediatric rheumatology - children's, young people's, parents' and carers' perspectives. Frequency of remission achievement in the pre-treat-to-target decade in juvenile idiopathic arthritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1