Spatio-temporal transformers for decoding neural movement control.

Benedetta Candelori, Giampiero Bardella, Indro Spinelli, Surabhi Ramawat, Pierpaolo Pani, Stefano Ferraina, Simone Scardapane
{"title":"Spatio-temporal transformers for decoding neural movement control.","authors":"Benedetta Candelori, Giampiero Bardella, Indro Spinelli, Surabhi Ramawat, Pierpaolo Pani, Stefano Ferraina, Simone Scardapane","doi":"10.1088/1741-2552/adaef0","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Deep learning tools applied to high-resolution neurophysiological data have significantly progressed, offering enhanced decoding, real-time processing, and readability for practical applications. However, the design of artificial neural networks to analyze neural activity<i>in vivo</i>remains a challenge, requiring a delicate balance between efficiency in low-data regimes and the interpretability of the results.<i>Approach</i>. To address this challenge, we introduce a novel specialized transformer architecture to analyze single-neuron spiking activity. The model is tested on multi-electrode recordings from the dorsal premotor cortex of non-human primates performing a motor inhibition task.<i>Main results</i>. The proposed architecture provides an early prediction of the correct movement direction, achieving accurate results no later than 230 ms after the Go signal presentation across animals. Additionally, the model can forecast whether the movement will be generated or withheld before a stop signal, unattended, is actually presented. To further understand the internal dynamics of the model, we compute the predicted correlations between time steps and between neurons at successive layers of the architecture, with the evolution of these correlations mirrors findings from previous theoretical analyses.<i>Significance</i>. Overall, our framework provides a comprehensive use case for the practical implementation of deep learning tools in motor control research, highlighting both the predictive capabilities and interpretability of the proposed architecture.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adaef0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective. Deep learning tools applied to high-resolution neurophysiological data have significantly progressed, offering enhanced decoding, real-time processing, and readability for practical applications. However, the design of artificial neural networks to analyze neural activityin vivoremains a challenge, requiring a delicate balance between efficiency in low-data regimes and the interpretability of the results.Approach. To address this challenge, we introduce a novel specialized transformer architecture to analyze single-neuron spiking activity. The model is tested on multi-electrode recordings from the dorsal premotor cortex of non-human primates performing a motor inhibition task.Main results. The proposed architecture provides an early prediction of the correct movement direction, achieving accurate results no later than 230 ms after the Go signal presentation across animals. Additionally, the model can forecast whether the movement will be generated or withheld before a stop signal, unattended, is actually presented. To further understand the internal dynamics of the model, we compute the predicted correlations between time steps and between neurons at successive layers of the architecture, with the evolution of these correlations mirrors findings from previous theoretical analyses.Significance. Overall, our framework provides a comprehensive use case for the practical implementation of deep learning tools in motor control research, highlighting both the predictive capabilities and interpretability of the proposed architecture.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于解码神经运动控制的时空变换器
目的:应用于高分辨率神经生理数据的深度学习工具取得了重大进展,为实际应用提供了增强的解码、实时处理和可读性。然而,设计人工神经网络来分析体内的神经活动仍然是一个挑战,需要在低数据状态下的效率和结果的可解释性之间取得微妙的平衡。方法: ;为了解决这一挑战,我们引入了一种新的专用变压器架构来分析单个神经元的峰值活动。该模型在执行运动抑制任务的非人类灵长类动物的背侧运动前皮层(PMd)的多电极记录上进行了测试。主要结果 ;所提出的架构提供了对正确运动方向的早期预测,在Go信号呈现后不迟于230 ms的时间内获得准确的结果。此外,该模型还可以预测,在无人值守的停止信号实际出现之前,运动是会产生还是会停止。为了进一步理解模型的内部动态,我们计算了时间步长之间和神经元之间在结构的连续层之间的预测相关性,这些相关性的演变反映了先前理论分析的结果。总体而言,我们的框架为深度学习工具在运动控制研究中的实际实施提供了一个全面的用例。强调所建议架构的预测能力和可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Methodological optimization for eliciting robust median nerve somatosensory evoked potentials for realtime single trial applications. A pretrained foundation model for headache disorders based on magnetoencephalography. Neuropacify: a method to transform and match a patient's intracranial EEG to their NeuroPace RNS system data. Neural correlation between swallowing motor imagery and execution: an EEG analysis. CTSSP: A temporal-spectral-spatial joint optimization algorithm for motor imagery EEG decoding.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1