APOC1 knockdown induces apoptosis and decreases angiogenesis in diffuse large B-cell lymphoma cells through blocking the PI3K/AKT/mTOR pathway.

0 MEDICINE, RESEARCH & EXPERIMENTAL Biomolecules & biomedicine Pub Date : 2025-01-23 DOI:10.17305/bb.2024.11550
Jing Gao, Xiaojuan Lu, Guanglei Wang, Tanling Huang, Zhongyu Tuo, Weiwei Meng
{"title":"APOC1 knockdown induces apoptosis and decreases angiogenesis in diffuse large B-cell lymphoma cells through blocking the PI3K/AKT/mTOR pathway.","authors":"Jing Gao, Xiaojuan Lu, Guanglei Wang, Tanling Huang, Zhongyu Tuo, Weiwei Meng","doi":"10.17305/bb.2024.11550","DOIUrl":null,"url":null,"abstract":"<p><p>Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous metastatic lymphoma that can be treated by targeting angiogenesis. Apolipoprotein C1 (APOC1) plays a significant role in the proliferation and metastasis of various malignant tumors; however, its role in DLBCL-particularly its effects on angiogenesis-remains largely unexplored. This study investigates the correlation between APOC1 expression and patient prognosis in DLBCL. Using APOC1 gene knockdown, apoptosis, migration, and invasion were assessed through flow cytometry, the EDU assay, wound healing, and Transwell assays. Additionally, human umbilical vein endothelial cells (HUVEC) angiogenesis was evaluated. Advanced techniques, such as immunofluorescence, TUNEL assay, and immunohistochemical labeling were employed to analyze the effects of APOC1 knockdown on the PI3K/AKT/mTOR signaling pathway and tumor formation in nude mice. Results showed that APOC1 is overexpressed in DLBCL tissues and cells, with high APOC1 levels associated with poor patient prognosis. In vitro experiments revealed that APOC1 knockdown increased apoptosis and inhibited cell proliferation, migration, invasion, HUVEC angiogenesis, and PI3K/AKT/mTOR signaling pathway protein expression in DLBCL cells. Similarly, in vivo studies demonstrated that APOC1 knockdown significantly reduced tumor growth, angiogenesis-related proteins, and phosphorylated PI3K/AKT/mTOR pathway proteins in nude mice. APOC1 knockdown promotes apoptosis and suppresses angiogenesis in DLBCL cells by inhibiting the PI3K/AKT/mTOR pathway.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.11550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous metastatic lymphoma that can be treated by targeting angiogenesis. Apolipoprotein C1 (APOC1) plays a significant role in the proliferation and metastasis of various malignant tumors; however, its role in DLBCL-particularly its effects on angiogenesis-remains largely unexplored. This study investigates the correlation between APOC1 expression and patient prognosis in DLBCL. Using APOC1 gene knockdown, apoptosis, migration, and invasion were assessed through flow cytometry, the EDU assay, wound healing, and Transwell assays. Additionally, human umbilical vein endothelial cells (HUVEC) angiogenesis was evaluated. Advanced techniques, such as immunofluorescence, TUNEL assay, and immunohistochemical labeling were employed to analyze the effects of APOC1 knockdown on the PI3K/AKT/mTOR signaling pathway and tumor formation in nude mice. Results showed that APOC1 is overexpressed in DLBCL tissues and cells, with high APOC1 levels associated with poor patient prognosis. In vitro experiments revealed that APOC1 knockdown increased apoptosis and inhibited cell proliferation, migration, invasion, HUVEC angiogenesis, and PI3K/AKT/mTOR signaling pathway protein expression in DLBCL cells. Similarly, in vivo studies demonstrated that APOC1 knockdown significantly reduced tumor growth, angiogenesis-related proteins, and phosphorylated PI3K/AKT/mTOR pathway proteins in nude mice. APOC1 knockdown promotes apoptosis and suppresses angiogenesis in DLBCL cells by inhibiting the PI3K/AKT/mTOR pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Methylene blue mitigates lung injury in HCA rats by regulating macrophage pyroptosis via Nrf2/HO-1 and NLRP3 pathways. Andrographolide suppresses cervical cancer progression by targeting angiogenesis and inducing apoptosis in a CAM-PDX model. Multi-omics reveals that ST6GAL1 promotes colorectal cancer progression through LGALS3BP sialylation. Jianpi Yiqi Busui prescription alleviates myasthenia gravis by regulating Th17 through the TAK1/P38 MAPK/eIF-4E signaling pathway. Fecal microbiota transplantation alleviates radiation enteritis by modulating gut microbiota and metabolite profiles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1