Methylene blue mitigates lung injury in HCA rats by regulating macrophage pyroptosis via Nrf2/HO-1 and NLRP3 pathways.

0 MEDICINE, RESEARCH & EXPERIMENTAL Biomolecules & biomedicine Pub Date : 2025-02-13 DOI:10.17305/bb.2025.11851
Fuyan Ding, Hong Wang, Gang Qiao, Zhidong Zhang
{"title":"Methylene blue mitigates lung injury in HCA rats by regulating macrophage pyroptosis via Nrf2/HO-1 and NLRP3 pathways.","authors":"Fuyan Ding, Hong Wang, Gang Qiao, Zhidong Zhang","doi":"10.17305/bb.2025.11851","DOIUrl":null,"url":null,"abstract":"<p><p>Methylene blue (MB) has antioxidant properties, yet its role in acute lung injury (ALI) induced by hypothermic circulatory arrest (HCA) remains unexplored. This study investigates MB's effects and underlying regulatory mechanisms in an HCA rat model. Rats received an intravenous bolus of MB (1 mg/kg) 15 min before HCA induction. Physiological parameters were monitored, and bronchoalveolar lavage fluid (BALF) was collected 2 h postoperatively to assess total protein levels, inflammatory cells, and cytokines. Histopathological lung damage was evaluated using hematoxylin-eosin (H&E) and TUNEL staining. Inflammatory markers and oxidative stress indicators were measured via ELISA and dihydroethidium (DHE) staining. Alveolar macrophages (AMs) were isolated to analyze polarization using flow cytometry and immunofluorescence double staining. Pyroptosis in AMs was detected with Yo-Pro-1 and Hoechst 33342 staining. Additionally, Western blotting was performed to examine the nuclear factor erythroid-2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, Nod-like receptor protein 3 (NLRP3) inflammasome, and pyroptosis-related proteins. Following HCA, rats exhibited significant blood gas abnormalities, structural lung damage, increased pathological scores, and higher apoptosis rates. However, MB mitigated these effects, improving physiological parameters and reducing lung histopathology scores. MB also lowered proinflammatory cytokine levels, increased SOD and GSH-Px activity, promoted AM polarization toward the M2 phenotype, and decreased pyroptosis. Mechanistically, MB activated the Nrf2/HO-1 pathway while inhibiting NLRP3 inflammasome activation. Notably, Nrf2 inhibitors and NLRP3 agonists weakened MB's protective effects by promoting inflammasome activation and pyroptosis, whereas Nrf2 agonists and NLRP3 inhibitors enhanced MB's beneficial impact. In conclusion, MB attenuates HCA-induced ALI by modulating AM polarization and pyroptosis via Nrf2/HO-1 pathway activation and NLRP3 inflammasome inhibition.</p>","PeriodicalId":72398,"journal":{"name":"Biomolecules & biomedicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules & biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2025.11851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Methylene blue (MB) has antioxidant properties, yet its role in acute lung injury (ALI) induced by hypothermic circulatory arrest (HCA) remains unexplored. This study investigates MB's effects and underlying regulatory mechanisms in an HCA rat model. Rats received an intravenous bolus of MB (1 mg/kg) 15 min before HCA induction. Physiological parameters were monitored, and bronchoalveolar lavage fluid (BALF) was collected 2 h postoperatively to assess total protein levels, inflammatory cells, and cytokines. Histopathological lung damage was evaluated using hematoxylin-eosin (H&E) and TUNEL staining. Inflammatory markers and oxidative stress indicators were measured via ELISA and dihydroethidium (DHE) staining. Alveolar macrophages (AMs) were isolated to analyze polarization using flow cytometry and immunofluorescence double staining. Pyroptosis in AMs was detected with Yo-Pro-1 and Hoechst 33342 staining. Additionally, Western blotting was performed to examine the nuclear factor erythroid-2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway, Nod-like receptor protein 3 (NLRP3) inflammasome, and pyroptosis-related proteins. Following HCA, rats exhibited significant blood gas abnormalities, structural lung damage, increased pathological scores, and higher apoptosis rates. However, MB mitigated these effects, improving physiological parameters and reducing lung histopathology scores. MB also lowered proinflammatory cytokine levels, increased SOD and GSH-Px activity, promoted AM polarization toward the M2 phenotype, and decreased pyroptosis. Mechanistically, MB activated the Nrf2/HO-1 pathway while inhibiting NLRP3 inflammasome activation. Notably, Nrf2 inhibitors and NLRP3 agonists weakened MB's protective effects by promoting inflammasome activation and pyroptosis, whereas Nrf2 agonists and NLRP3 inhibitors enhanced MB's beneficial impact. In conclusion, MB attenuates HCA-induced ALI by modulating AM polarization and pyroptosis via Nrf2/HO-1 pathway activation and NLRP3 inflammasome inhibition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚甲蓝通过 Nrf2/HO-1 和 NLRP3 通路调节巨噬细胞的脓毒症,减轻 HCA 大鼠的肺损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Methylene blue mitigates lung injury in HCA rats by regulating macrophage pyroptosis via Nrf2/HO-1 and NLRP3 pathways. Andrographolide suppresses cervical cancer progression by targeting angiogenesis and inducing apoptosis in a CAM-PDX model. Multi-omics reveals that ST6GAL1 promotes colorectal cancer progression through LGALS3BP sialylation. Jianpi Yiqi Busui prescription alleviates myasthenia gravis by regulating Th17 through the TAK1/P38 MAPK/eIF-4E signaling pathway. Fecal microbiota transplantation alleviates radiation enteritis by modulating gut microbiota and metabolite profiles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1