The influence of lightning on insect and fungal dynamics in a lowland tropical forest

IF 4.4 2区 环境科学与生态学 Q1 ECOLOGY Ecology Pub Date : 2025-01-27 DOI:10.1002/ecy.4521
Kane A. Lawhorn, Jeannine H. Richards, Evan M. Gora, Jeffrey C. Burchfield, Phillip M. Bitzer, Cesar Gutierrez, Stephen P. Yanoviak
{"title":"The influence of lightning on insect and fungal dynamics in a lowland tropical forest","authors":"Kane A. Lawhorn,&nbsp;Jeannine H. Richards,&nbsp;Evan M. Gora,&nbsp;Jeffrey C. Burchfield,&nbsp;Phillip M. Bitzer,&nbsp;Cesar Gutierrez,&nbsp;Stephen P. Yanoviak","doi":"10.1002/ecy.4521","DOIUrl":null,"url":null,"abstract":"<p>Lightning strikes are a common source of disturbance in tropical forests, and a typical strike generates large quantities of dead wood. Lightning-damaged trees are a consistent resource for tropical saproxylic (i.e., dead wood-dependent) organisms, but patterns of consumer colonization and succession following lightning strikes are not known. Here, we documented the occurrence of four common consumer taxa spanning multiple trophic levels—beetles, <i>Azteca</i> ants, termites, and fungi—in lightning strike sites and nearby undamaged control sites over time in a lowland forest of Panama. Beetle abundance was 10 times higher in lightning strike sites than in paired control sites, and beetle assemblages were compositionally distinct. Those in strike sites were initially dominated by bark and ambrosia beetles (Curculionidae: Platypodinae, Scolytinae); bark and ambrosia beetles, and predaceous taxa increased in abundance relatively synchronously. Beetle activity and fungal fruiting bodies, respectively, were 3.8 and 12.2 times more likely to be observed in lightning-damaged trees in strike sites versus undamaged trees in paired control sites, whereas the occurrence probabilities of <i>Azteca</i> ants and termites were similar between damaged trees in lightning strike sites and undamaged trees in control sites. Tree size also was important; larger dead trees in strike sites were more likely to support beetles, termites, and fungal fruiting bodies, and larger trees—regardless of mortality status—were more likely to host <i>Azteca</i>. Beetle presence was associated with higher rates of subsequent fungal presence, providing some evidence of beetle-associated priority effects on colonization patterns. These results suggest that lightning plays a key role in supporting tropical insect and fungal consumers by providing localized patches of suitable habitat. Any climate-driven changes in lightning frequency in tropical forests will likely affect a broad suite of consumer organisms, potentially altering ecosystem-level processes.</p>","PeriodicalId":11484,"journal":{"name":"Ecology","volume":"106 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecy.4521","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lightning strikes are a common source of disturbance in tropical forests, and a typical strike generates large quantities of dead wood. Lightning-damaged trees are a consistent resource for tropical saproxylic (i.e., dead wood-dependent) organisms, but patterns of consumer colonization and succession following lightning strikes are not known. Here, we documented the occurrence of four common consumer taxa spanning multiple trophic levels—beetles, Azteca ants, termites, and fungi—in lightning strike sites and nearby undamaged control sites over time in a lowland forest of Panama. Beetle abundance was 10 times higher in lightning strike sites than in paired control sites, and beetle assemblages were compositionally distinct. Those in strike sites were initially dominated by bark and ambrosia beetles (Curculionidae: Platypodinae, Scolytinae); bark and ambrosia beetles, and predaceous taxa increased in abundance relatively synchronously. Beetle activity and fungal fruiting bodies, respectively, were 3.8 and 12.2 times more likely to be observed in lightning-damaged trees in strike sites versus undamaged trees in paired control sites, whereas the occurrence probabilities of Azteca ants and termites were similar between damaged trees in lightning strike sites and undamaged trees in control sites. Tree size also was important; larger dead trees in strike sites were more likely to support beetles, termites, and fungal fruiting bodies, and larger trees—regardless of mortality status—were more likely to host Azteca. Beetle presence was associated with higher rates of subsequent fungal presence, providing some evidence of beetle-associated priority effects on colonization patterns. These results suggest that lightning plays a key role in supporting tropical insect and fungal consumers by providing localized patches of suitable habitat. Any climate-driven changes in lightning frequency in tropical forests will likely affect a broad suite of consumer organisms, potentially altering ecosystem-level processes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecology
Ecology 环境科学-生态学
CiteScore
8.30
自引率
2.10%
发文量
332
审稿时长
3 months
期刊介绍: Ecology publishes articles that report on the basic elements of ecological research. Emphasis is placed on concise, clear articles documenting important ecological phenomena. The journal publishes a broad array of research that includes a rapidly expanding envelope of subject matter, techniques, approaches, and concepts: paleoecology through present-day phenomena; evolutionary, population, physiological, community, and ecosystem ecology, as well as biogeochemistry; inclusive of descriptive, comparative, experimental, mathematical, statistical, and interdisciplinary approaches.
期刊最新文献
Uncovering the mechanisms underpinning divergent environmental change impacts on biodiversity and ecosystem functioning The relative influence of climate extremes and species richness on the temporal variability of bird communities Residential development reduces black bear (Ursus americanus) opportunity to scavenge cougar (Puma concolor) killed prey DiverReef: A global database of the behavior of recreational divers and their interactions with reefs over 20 years Historical reindeer corrals in northern boreal forests reveal divergent post-disturbance reorganization by forest type
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1