Brain-Cognition Fingerprinting via Graph-GCCA with Contrastive Learning.

Yixin Wang, Wei Peng, Yu Zhang, Ehsan Adeli, Qingyu Zhao, Kilian M Pohl
{"title":"Brain-Cognition Fingerprinting via Graph-GCCA with Contrastive Learning.","authors":"Yixin Wang, Wei Peng, Yu Zhang, Ehsan Adeli, Qingyu Zhao, Kilian M Pohl","doi":"10.1007/978-3-031-78761-4_3","DOIUrl":null,"url":null,"abstract":"<p><p>Many longitudinal neuroimaging studies aim to improve the understanding of brain aging and diseases by studying the dynamic interactions between brain function and cognition. Doing so requires accurate encoding of their multidimensional relationship while accounting for individual variability over time. For this purpose, we propose an unsupervised learning model (called <b>Co</b>ntrastive Learning-based <b>Gra</b>ph Generalized <b>Ca</b>nonical Correlation Analysis (CoGraCa)) that encodes their relationship via Graph Attention Networks and generalized Canonical Correlational Analysis. To create brain-cognition fingerprints reflecting unique neural and cognitive phenotype of each person, the model also relies on individualized and multimodal contrastive learning. We apply CoGraCa to longitudinal dataset of healthy individuals consisting of resting-state functional MRI and cognitive measures acquired at multiple visits for each participant. The generated fingerprints effectively capture significant individual differences and outperform current single-modal and CCA-based multimodal models in identifying sex and age. More importantly, our encoding provides interpretable interactions between those two modalities.</p>","PeriodicalId":520367,"journal":{"name":"Machine learning in clinical neuroimaging : 7th international workshop, MLCN 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, proceedings. MLCN (Workshop) (7th : 2024 : Marrakesh, Morocco)","volume":"15266 ","pages":"24-34"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772010/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in clinical neuroimaging : 7th international workshop, MLCN 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, proceedings. MLCN (Workshop) (7th : 2024 : Marrakesh, Morocco)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-78761-4_3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many longitudinal neuroimaging studies aim to improve the understanding of brain aging and diseases by studying the dynamic interactions between brain function and cognition. Doing so requires accurate encoding of their multidimensional relationship while accounting for individual variability over time. For this purpose, we propose an unsupervised learning model (called Contrastive Learning-based Graph Generalized Canonical Correlation Analysis (CoGraCa)) that encodes their relationship via Graph Attention Networks and generalized Canonical Correlational Analysis. To create brain-cognition fingerprints reflecting unique neural and cognitive phenotype of each person, the model also relies on individualized and multimodal contrastive learning. We apply CoGraCa to longitudinal dataset of healthy individuals consisting of resting-state functional MRI and cognitive measures acquired at multiple visits for each participant. The generated fingerprints effectively capture significant individual differences and outperform current single-modal and CCA-based multimodal models in identifying sex and age. More importantly, our encoding provides interpretable interactions between those two modalities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SpaRG: Sparsely Reconstructed Graphs for Generalizable fMRI Analysis. ProxiMO: Proximal Multi-operator Networks for Quantitative Susceptibility Mapping. Brain-Cognition Fingerprinting via Graph-GCCA with Contrastive Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1