Real-time observation of picosecond-timescale optical quantum entanglement towards ultrafast quantum information processing

IF 32.3 1区 物理与天体物理 Q1 OPTICS Nature Photonics Pub Date : 2025-01-29 DOI:10.1038/s41566-024-01589-7
Akito Kawasaki, Hector Brunel, Ryuhoh Ide, Takumi Suzuki, Takahiro Kashiwazaki, Asuka Inoue, Takeshi Umeki, Taichi Yamashima, Atsushi Sakaguchi, Kan Takase, Mamoru Endo, Warit Asavanant, Akira Furusawa
{"title":"Real-time observation of picosecond-timescale optical quantum entanglement towards ultrafast quantum information processing","authors":"Akito Kawasaki, Hector Brunel, Ryuhoh Ide, Takumi Suzuki, Takahiro Kashiwazaki, Asuka Inoue, Takeshi Umeki, Taichi Yamashima, Atsushi Sakaguchi, Kan Takase, Mamoru Endo, Warit Asavanant, Akira Furusawa","doi":"10.1038/s41566-024-01589-7","DOIUrl":null,"url":null,"abstract":"<p>Entanglement is a fundamental resource for various optical quantum information processing (QIP) applications. To achieve high-speed QIP systems, entanglement should be encoded in short wavepackets. Here we report the real-time observation of ultrafast optical Einstein–Podolsky–Rosen correlation at a picosecond timescale in a continuous-wave system. Optical phase-sensitive amplification using a 6-THz-bandwidth waveguide-based optical parametric amplifier enhances the effective efficiency of 70-GHz-bandwidth homodyne detectors, mainly used in 5G telecommunication, enabling its use in real-time quantum state measurement. Although power measurement using frequency scanning, such as an optical spectrum analyser, is not performed in real time, our observation is demonstrated through the real-time amplitude measurement and can be directly used in QIP applications. The observed Einstein–Podolsky–Rosen states show quantum correlation of 4.5 dB below the shot-noise level encoded in wavepackets with 40 ps period, equivalent to 25 GHz repetition—10<sup>3</sup> times faster than previous entanglement observation in continuous-wave systems. The quantum correlation of 4.5 dB is already sufficient for several QIP applications, and our system can be readily extended to large-scale entanglement. Moreover, our scheme has high compatibility with optical communication technology such as wavelength-division multiplexing, and femtosecond-timescale observation is also feasible. Our demonstration is a paradigm shift in accelerating accessible quantum correlation—the foundational resource of all quantum applications—from the nanosecond to picosecond timescales, enabling ultrafast optical QIP.</p>","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"95 1","pages":""},"PeriodicalIF":32.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41566-024-01589-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Entanglement is a fundamental resource for various optical quantum information processing (QIP) applications. To achieve high-speed QIP systems, entanglement should be encoded in short wavepackets. Here we report the real-time observation of ultrafast optical Einstein–Podolsky–Rosen correlation at a picosecond timescale in a continuous-wave system. Optical phase-sensitive amplification using a 6-THz-bandwidth waveguide-based optical parametric amplifier enhances the effective efficiency of 70-GHz-bandwidth homodyne detectors, mainly used in 5G telecommunication, enabling its use in real-time quantum state measurement. Although power measurement using frequency scanning, such as an optical spectrum analyser, is not performed in real time, our observation is demonstrated through the real-time amplitude measurement and can be directly used in QIP applications. The observed Einstein–Podolsky–Rosen states show quantum correlation of 4.5 dB below the shot-noise level encoded in wavepackets with 40 ps period, equivalent to 25 GHz repetition—103 times faster than previous entanglement observation in continuous-wave systems. The quantum correlation of 4.5 dB is already sufficient for several QIP applications, and our system can be readily extended to large-scale entanglement. Moreover, our scheme has high compatibility with optical communication technology such as wavelength-division multiplexing, and femtosecond-timescale observation is also feasible. Our demonstration is a paradigm shift in accelerating accessible quantum correlation—the foundational resource of all quantum applications—from the nanosecond to picosecond timescales, enabling ultrafast optical QIP.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
期刊最新文献
Unlocking an optical bistability switch A resonant tone for photonic time crystals Single-photon quantum effects in biomolecules Taming twisted light with topology Magnetically driven photonic ‘microbots’
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1