Li-Xue Qiu, Dong-Xing Guan, Yi-Wen Liu, Yu Luo, H. Henry Teng, Yakov Kuzyakov, Lena Q. Ma
{"title":"Interactions of silicon and arbuscular mycorrhizal fungi on phosphorus uptake during rice vegetative growth","authors":"Li-Xue Qiu, Dong-Xing Guan, Yi-Wen Liu, Yu Luo, H. Henry Teng, Yakov Kuzyakov, Lena Q. Ma","doi":"10.1016/j.geoderma.2025.117184","DOIUrl":null,"url":null,"abstract":"Silicon (Si) and arbuscular mycorrhizal fungi (AMF) improve phosphorus (P) nutrition in crops, but the mechanisms underlying their interactive effects on P uptake by roots remain elusive. This study investigated the impact of Si and AMF (<ce:italic>Rhizophagus irregularis</ce:italic> DAOM) on P uptake at rice (<ce:italic>Oryza sativa</ce:italic> L.) late jointing stage grown in soils with low and high P availability (18.2 vs 62.1 mg P kg<ce:sup loc=\"post\">−1</ce:sup>) under greenhouse conditions. Under low P availability, AMF increased P content in rice leaves and stems by 16.1 % and 11.8 %, respectively. However, simultaneous Si application with AMF inoculation counteracted this positive effect, reducing the P content in leaves and stems by 15.9 % and 8.28 %, respectively, compared to AMF alone, due to a 20.8 % decrease in AMF colonization rate. This reduction may be associated with Si deposition on root cell walls and increased competition between AMF and P-solubilizing bacteria (PSB). In contrast, under high P availability, the combination of Si and AMF increased stem P content by 8.42 % compared to AMF alone, linked to Si-induced raise in PSB abundance. This could strengthen cooperation between AMF and PSB, as AMF mycelial secretions provide<ce:hsp sp=\"0.25\"></ce:hsp>easily available carbon sources for PSB, and PSB dissolved<ce:hsp sp=\"0.25\"></ce:hsp>insoluble P forms for AMF uptake. These findings highlight the crucial role of soil P availability in modulating the efficacy of Si and AMF co-application to increase P uptake during rice vegetative growth. Under low P availability, Si reduces AMF functioning by decreasing colonization rates, while under high P availability, Si reinforces the P-promoting effects of AMF by stimulating PSB abundance. This study emphasizes the importance of considering soil P status when developing strategies that employ Si and AMF to optimize P utilization in agroecosystems.","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"158 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.geoderma.2025.117184","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Silicon (Si) and arbuscular mycorrhizal fungi (AMF) improve phosphorus (P) nutrition in crops, but the mechanisms underlying their interactive effects on P uptake by roots remain elusive. This study investigated the impact of Si and AMF (Rhizophagus irregularis DAOM) on P uptake at rice (Oryza sativa L.) late jointing stage grown in soils with low and high P availability (18.2 vs 62.1 mg P kg−1) under greenhouse conditions. Under low P availability, AMF increased P content in rice leaves and stems by 16.1 % and 11.8 %, respectively. However, simultaneous Si application with AMF inoculation counteracted this positive effect, reducing the P content in leaves and stems by 15.9 % and 8.28 %, respectively, compared to AMF alone, due to a 20.8 % decrease in AMF colonization rate. This reduction may be associated with Si deposition on root cell walls and increased competition between AMF and P-solubilizing bacteria (PSB). In contrast, under high P availability, the combination of Si and AMF increased stem P content by 8.42 % compared to AMF alone, linked to Si-induced raise in PSB abundance. This could strengthen cooperation between AMF and PSB, as AMF mycelial secretions provideeasily available carbon sources for PSB, and PSB dissolvedinsoluble P forms for AMF uptake. These findings highlight the crucial role of soil P availability in modulating the efficacy of Si and AMF co-application to increase P uptake during rice vegetative growth. Under low P availability, Si reduces AMF functioning by decreasing colonization rates, while under high P availability, Si reinforces the P-promoting effects of AMF by stimulating PSB abundance. This study emphasizes the importance of considering soil P status when developing strategies that employ Si and AMF to optimize P utilization in agroecosystems.
期刊介绍:
Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.