Improving the computation of forced responses of periodic structures by the wave-based finite element method via a modified generalized Bloch mode synthesis
Vinícius M. de S. Santos , Thiago de P. Sales , Morvan Ouisse
{"title":"Improving the computation of forced responses of periodic structures by the wave-based finite element method via a modified generalized Bloch mode synthesis","authors":"Vinícius M. de S. Santos , Thiago de P. Sales , Morvan Ouisse","doi":"10.1016/j.finel.2025.104314","DOIUrl":null,"url":null,"abstract":"<div><div>Periodic structures have attracted interest across various fields of science and engineering due to their unique ability to manipulate wave propagation. The Wave-based Finite Element Method (WFEM) is typically employed to model such systems by relying on the dynamic behavior of a single unit cell of the lattice. However, the WFEM can face challenges in handling unit cell finite element (FE) models with several degrees of freedom (DoFs), as it involves operating with large-sized matrices. Therefore, in this work, we combine the WFEM with the Generalized Bloch-Mode Synthesis (GBMS) to offer a highly efficient and accurate method for modeling periodic structures. Three different types of unit cells were investigated in this study, demonstrating that highly reduced unit cell models can be obtained using the Craig-Bampton (CB) and Local-level Characteristic Constraint (L-CC) model reduction methods. By leveraging the advantages of the WFEM and the reduced-order unit cell models, harmonic forced responses were rapidly and accurately computed. Additionally, we showed that combining the WFEM with the GBMS mitigates numerical issues when computing forced responses, as the boundary DoFs are reduced to a smaller number of equations, avoiding the computation of high-order evanescent modes, a task that can be difficult to perform accurately for some unit cells.</div></div>","PeriodicalId":56133,"journal":{"name":"Finite Elements in Analysis and Design","volume":"245 ","pages":"Article 104314"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Elements in Analysis and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168874X25000034","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Periodic structures have attracted interest across various fields of science and engineering due to their unique ability to manipulate wave propagation. The Wave-based Finite Element Method (WFEM) is typically employed to model such systems by relying on the dynamic behavior of a single unit cell of the lattice. However, the WFEM can face challenges in handling unit cell finite element (FE) models with several degrees of freedom (DoFs), as it involves operating with large-sized matrices. Therefore, in this work, we combine the WFEM with the Generalized Bloch-Mode Synthesis (GBMS) to offer a highly efficient and accurate method for modeling periodic structures. Three different types of unit cells were investigated in this study, demonstrating that highly reduced unit cell models can be obtained using the Craig-Bampton (CB) and Local-level Characteristic Constraint (L-CC) model reduction methods. By leveraging the advantages of the WFEM and the reduced-order unit cell models, harmonic forced responses were rapidly and accurately computed. Additionally, we showed that combining the WFEM with the GBMS mitigates numerical issues when computing forced responses, as the boundary DoFs are reduced to a smaller number of equations, avoiding the computation of high-order evanescent modes, a task that can be difficult to perform accurately for some unit cells.
期刊介绍:
The aim of this journal is to provide ideas and information involving the use of the finite element method and its variants, both in scientific inquiry and in professional practice. The scope is intentionally broad, encompassing use of the finite element method in engineering as well as the pure and applied sciences. The emphasis of the journal will be the development and use of numerical procedures to solve practical problems, although contributions relating to the mathematical and theoretical foundations and computer implementation of numerical methods are likewise welcomed. Review articles presenting unbiased and comprehensive reviews of state-of-the-art topics will also be accommodated.