GATA3-COMT1-Melatonin as Upstream Signaling of ABA Participated in Se-Enhanced Cold Tolerance by Regulate Iron Uptake and Distribution in Cucumis sativus L
Dan Wen, Ning Yang, Wenjun Zhang, Xiao Wang, Jibo Zhang, Wenjing Nie, Hualu Song, Shasha Sun, Haijuan Zhang, Yujuan Han, Mingfang Qi
{"title":"GATA3-COMT1-Melatonin as Upstream Signaling of ABA Participated in Se-Enhanced Cold Tolerance by Regulate Iron Uptake and Distribution in Cucumis sativus L","authors":"Dan Wen, Ning Yang, Wenjun Zhang, Xiao Wang, Jibo Zhang, Wenjing Nie, Hualu Song, Shasha Sun, Haijuan Zhang, Yujuan Han, Mingfang Qi","doi":"10.1111/jpi.70028","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Selenium has the function of bio-stimulating hormone. However, the underlying physiological and molecular mechanisms of melatonin and abscisic acid as secondary messengers in improving cold tolerance by selenium are limited. This study investigated the effects of selenite on the cold stress of cucumber seedlings. The results showed that the content of endogenesis abscisic acid significantly changed with exogenous application of selenite under cold stress. Interestingly, we found that the content of iron significantly changed in this process. Iron uptake and distribution may be the important reason of selenium alleviates cold injury of cucumber seedlings. Whole genes transcriptome was used for screening key genes on leaf and root of cucumber seedlings. To determine the interrelation between abscisic acid and melatonin in selenite alleviating cold stress, abscisic acid inhibitor fluridone and melatonin synthesis inhibitor <i>p</i>-chlorophenylalanine were used for in-depth study. The results indicate that melatonin as upstream signal of ABA involved in selenium enhanced cucumber cold tolerance. The results of yeast single hybridization, EMSA, LUC, and overexpression transgenic showed that the transcription factor <i>CsGATA3</i> regulates the expression of <i>CsCOMT1</i> in vitro and in vivo and affects melatonin content. This study provides a theoretical basis for cucumber cultivation and breeding.</p>\n </div>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70028","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Selenium has the function of bio-stimulating hormone. However, the underlying physiological and molecular mechanisms of melatonin and abscisic acid as secondary messengers in improving cold tolerance by selenium are limited. This study investigated the effects of selenite on the cold stress of cucumber seedlings. The results showed that the content of endogenesis abscisic acid significantly changed with exogenous application of selenite under cold stress. Interestingly, we found that the content of iron significantly changed in this process. Iron uptake and distribution may be the important reason of selenium alleviates cold injury of cucumber seedlings. Whole genes transcriptome was used for screening key genes on leaf and root of cucumber seedlings. To determine the interrelation between abscisic acid and melatonin in selenite alleviating cold stress, abscisic acid inhibitor fluridone and melatonin synthesis inhibitor p-chlorophenylalanine were used for in-depth study. The results indicate that melatonin as upstream signal of ABA involved in selenium enhanced cucumber cold tolerance. The results of yeast single hybridization, EMSA, LUC, and overexpression transgenic showed that the transcription factor CsGATA3 regulates the expression of CsCOMT1 in vitro and in vivo and affects melatonin content. This study provides a theoretical basis for cucumber cultivation and breeding.
期刊介绍:
The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.