Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes

IF 4.5 2区 生物学 Q2 CELL BIOLOGY Journal of Cellular Physiology Pub Date : 2025-01-14 DOI:10.1002/jcp.31523
Iqra Pervaiz, Yash Mehta, Abraham Jacob Al-Ahmad
{"title":"Glucose Transporter 1 Deficiency Impairs Glucose Metabolism and Barrier Induction in Human Induced Pluripotent Stem Cell-Derived Astrocytes","authors":"Iqra Pervaiz,&nbsp;Yash Mehta,&nbsp;Abraham Jacob Al-Ahmad","doi":"10.1002/jcp.31523","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Glucose is a major source of energy for the brain. At the blood–brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting <i>SLC2A1</i>, reduces glucose brain uptake. A lot of effort has been made to characterize GLUT1DS at the BBB, but the impact on astrocytes remains unclear. In this study, we investigated the impact of GLUT1DS on astrocyte differentiation and function in vitro, using human induced pluripotent stem cells GLUT1DS (GLUT1DS-iPSCs) differentiated into astrocyte-like cells (iAstros). GLUT1 expression is decreased during the differentiation of iPSCs into astrocytes, with neural progenitor cells showing the lowest expression. The presence of a truncated GLUT1 did not compromise the differentiation of iPSCs into iAstros, as these cells could express several key markers representative of the astrocyte lineage. GLUT1DS-iAstros failed to express full-length GLUT1 at protein levels while showing no signs of impaired GLUT4 expression. However, GLUT1DS-iAstros showed decreased glucose uptake and lactate production compared to control-iAstros, reduced glycolysis, and mitochondrial activity as well as ATP deficit. In addition to reduced energy production, astrocytes displayed a reduced extracellular glutamate release. As previously observed, one iAstros clone (C7) showed the most severe phenotype from all groups. Our study provides an insightful view of the contribution of GLUT1 in astrocytes' energetic metabolism and raises the possible contribution of these cells in the astrocyte–neuron metabolic coupling. Our future direction is to understand better how GLUT1DS impacts astrocytes and neurons within their metabolic coupling.</p></div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.31523","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glucose is a major source of energy for the brain. At the blood–brain barrier (BBB), glucose uptake is facilitated by glucose transporter 1 (GLUT1). GLUT1 Deficiency Syndrome (GLUT1DS), a haploinsufficiency affecting SLC2A1, reduces glucose brain uptake. A lot of effort has been made to characterize GLUT1DS at the BBB, but the impact on astrocytes remains unclear. In this study, we investigated the impact of GLUT1DS on astrocyte differentiation and function in vitro, using human induced pluripotent stem cells GLUT1DS (GLUT1DS-iPSCs) differentiated into astrocyte-like cells (iAstros). GLUT1 expression is decreased during the differentiation of iPSCs into astrocytes, with neural progenitor cells showing the lowest expression. The presence of a truncated GLUT1 did not compromise the differentiation of iPSCs into iAstros, as these cells could express several key markers representative of the astrocyte lineage. GLUT1DS-iAstros failed to express full-length GLUT1 at protein levels while showing no signs of impaired GLUT4 expression. However, GLUT1DS-iAstros showed decreased glucose uptake and lactate production compared to control-iAstros, reduced glycolysis, and mitochondrial activity as well as ATP deficit. In addition to reduced energy production, astrocytes displayed a reduced extracellular glutamate release. As previously observed, one iAstros clone (C7) showed the most severe phenotype from all groups. Our study provides an insightful view of the contribution of GLUT1 in astrocytes' energetic metabolism and raises the possible contribution of these cells in the astrocyte–neuron metabolic coupling. Our future direction is to understand better how GLUT1DS impacts astrocytes and neurons within their metabolic coupling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.70
自引率
0.00%
发文量
256
审稿时长
1 months
期刊介绍: The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.
期刊最新文献
Issue Information Unraveling pH Regulation of TMEM175, an Endolysosomal Cation Channel With a Role in Parkinson's Disease Carboxyl Terminal Modulator Protein Induces Cell Senescence and Is Upregulated With Aging by Zic2 in Rats RETRACTION: Promotion of Cell Autophagy and Apoptosis in Cervical Cancer by Inhibition of Long Noncoding RNA LINC00511 via Transcription Factor RXRA-regulated PLD1 RETRACTION: Role of Mirnas in Lung Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1