An explainable transformer model integrating PET and tabular data for histologic grading and prognosis of follicular lymphoma: a multi-institutional digital biopsy study

IF 8.6 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Nuclear Medicine and Molecular Imaging Pub Date : 2025-01-30 DOI:10.1007/s00259-025-07090-9
Chong Jiang, Zekun Jiang, Zitong Zhang, Hexiao Huang, Hang Zhou, Qiuhui Jiang, Yue Teng, Hai Li, Bing Xu, Xin Li, Jingyan Xu, Chongyang Ding, Kang Li, Rong Tian
{"title":"An explainable transformer model integrating PET and tabular data for histologic grading and prognosis of follicular lymphoma: a multi-institutional digital biopsy study","authors":"Chong Jiang, Zekun Jiang, Zitong Zhang, Hexiao Huang, Hang Zhou, Qiuhui Jiang, Yue Teng, Hai Li, Bing Xu, Xin Li, Jingyan Xu, Chongyang Ding, Kang Li, Rong Tian","doi":"10.1007/s00259-025-07090-9","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Pathological grade is a critical determinant of clinical outcomes and decision-making of follicular lymphoma (FL). This study aimed to develop a deep learning model as a digital biopsy for the non-invasive identification of FL grade.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>This study retrospectively included 513 FL patients from five independent hospital centers, randomly divided into training, internal validation, and external validation cohorts. A multimodal fusion Transformer model was developed integrating 3D PET tumor images with tabular data to predict FL grade. Additionally, the model is equipped with explainable modules, including Gradient-weighted Class Activation Mapping (Grad-CAM) for PET images, SHapley Additive exPlanations analysis for tabular data, and the calculation of predictive contribution ratios for both modalities, to enhance clinical interpretability and reliability. The predictive performance was evaluated using the area under the receiver operating characteristic curve (AUC) and accuracy, and its prognostic value was also assessed.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The Transformer model demonstrated high accuracy in grading FL, with AUCs of 0.964–0.985 and accuracies of 90.2-96.7% in the training cohort, and similar performance in the validation cohorts (AUCs: 0.936–0.971, accuracies: 86.4-97.0%). Ablation studies confirmed that the fusion model outperformed single-modality models (AUCs: 0.974 − 0.956, accuracies: 89.8%-85.8%). Interpretability analysis revealed that PET images contributed 81-89% of the predictive value. Grad-CAM highlighted the tumor and peri-tumor regions. The model also effectively stratified patients by survival risk (<i>P</i> &lt; 0.05), highlighting its prognostic value.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Our study developed an explainable multimodal fusion Transformer model for accurate grading and prognosis of FL, with the potential to aid clinical decision-making.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":11909,"journal":{"name":"European Journal of Nuclear Medicine and Molecular Imaging","volume":"78 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nuclear Medicine and Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00259-025-07090-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Pathological grade is a critical determinant of clinical outcomes and decision-making of follicular lymphoma (FL). This study aimed to develop a deep learning model as a digital biopsy for the non-invasive identification of FL grade.

Methods

This study retrospectively included 513 FL patients from five independent hospital centers, randomly divided into training, internal validation, and external validation cohorts. A multimodal fusion Transformer model was developed integrating 3D PET tumor images with tabular data to predict FL grade. Additionally, the model is equipped with explainable modules, including Gradient-weighted Class Activation Mapping (Grad-CAM) for PET images, SHapley Additive exPlanations analysis for tabular data, and the calculation of predictive contribution ratios for both modalities, to enhance clinical interpretability and reliability. The predictive performance was evaluated using the area under the receiver operating characteristic curve (AUC) and accuracy, and its prognostic value was also assessed.

Results

The Transformer model demonstrated high accuracy in grading FL, with AUCs of 0.964–0.985 and accuracies of 90.2-96.7% in the training cohort, and similar performance in the validation cohorts (AUCs: 0.936–0.971, accuracies: 86.4-97.0%). Ablation studies confirmed that the fusion model outperformed single-modality models (AUCs: 0.974 − 0.956, accuracies: 89.8%-85.8%). Interpretability analysis revealed that PET images contributed 81-89% of the predictive value. Grad-CAM highlighted the tumor and peri-tumor regions. The model also effectively stratified patients by survival risk (P < 0.05), highlighting its prognostic value.

Conclusions

Our study developed an explainable multimodal fusion Transformer model for accurate grading and prognosis of FL, with the potential to aid clinical decision-making.

Graphical Abstract

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.60
自引率
9.90%
发文量
392
审稿时长
3 months
期刊介绍: The European Journal of Nuclear Medicine and Molecular Imaging serves as a platform for the exchange of clinical and scientific information within nuclear medicine and related professions. It welcomes international submissions from professionals involved in the functional, metabolic, and molecular investigation of diseases. The journal's coverage spans physics, dosimetry, radiation biology, radiochemistry, and pharmacy, providing high-quality peer review by experts in the field. Known for highly cited and downloaded articles, it ensures global visibility for research work and is part of the EJNMMI journal family.
期刊最新文献
Evaluation of deep learning-based scatter correction on a long-axial field-of-view PET scanner A hybrid [18F]fluoropivalate PET-multiparametric MRI to detect and characterise brain tumour metastases based on a permissive environment for monocarboxylate transport Robust whole-body PET image denoising using 3D diffusion models: evaluation across various scanners, tracers, and dose levels Optimizing MR-based attenuation correction in hybrid PET/MR using deep learning: validation with a flatbed insert and consistent patient positioning Unveiling the potential of copper-61 vs. gallium-68 for SSTR PET imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1