Robust whole-body PET image denoising using 3D diffusion models: evaluation across various scanners, tracers, and dose levels

IF 8.6 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Journal of Nuclear Medicine and Molecular Imaging Pub Date : 2025-02-06 DOI:10.1007/s00259-025-07122-4
Boxiao Yu, Savas Ozdemir, Yafei Dong, Wei Shao, Tinsu Pan, Kuangyu Shi, Kuang Gong
{"title":"Robust whole-body PET image denoising using 3D diffusion models: evaluation across various scanners, tracers, and dose levels","authors":"Boxiao Yu, Savas Ozdemir, Yafei Dong, Wei Shao, Tinsu Pan, Kuangyu Shi, Kuang Gong","doi":"10.1007/s00259-025-07122-4","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Whole-body PET imaging plays an essential role in cancer diagnosis and treatment but suffers from low image quality. Traditional deep learning-based denoising methods work well for a specific acquisition but are less effective in handling diverse PET protocols. In this study, we proposed and validated a 3D Denoising Diffusion Probabilistic Model (3D DDPM) as a robust and universal solution for whole-body PET image denoising.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The proposed 3D DDPM gradually injected noise into the images during the forward diffusion phase, allowing the model to learn to reconstruct the clean data during the reverse diffusion process. A 3D convolutional network was trained using high-quality data from the Biograph Vision Quadra PET/CT scanner to generate the score function, enabling the model to capture accurate PET distribution information extracted from the total-body datasets. The trained 3D DDPM was evaluated on datasets from four scanners, four tracer types, and six dose levels representing a broad spectrum of clinical scenarios.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The proposed 3D DDPM consistently outperformed 2D DDPM, 3D UNet, and 3D GAN, demonstrating its superior denoising performance across all tested conditions. Additionally, the model’s uncertainty maps exhibited lower variance, reflecting its higher confidence in its outputs.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>The proposed 3D DDPM can effectively handle various clinical settings, including variations in dose levels, scanners, and tracers, establishing it as a promising foundational model for PET image denoising. The trained 3D DDPM model of this work can be utilized off the shelf by researchers as a whole-body PET image denoising solution. The code and model are available at https://github.com/Miche11eU/PET-Image-Denoising-Using-3D-Diffusion-Model.</p>","PeriodicalId":11909,"journal":{"name":"European Journal of Nuclear Medicine and Molecular Imaging","volume":"58 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nuclear Medicine and Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00259-025-07122-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

Whole-body PET imaging plays an essential role in cancer diagnosis and treatment but suffers from low image quality. Traditional deep learning-based denoising methods work well for a specific acquisition but are less effective in handling diverse PET protocols. In this study, we proposed and validated a 3D Denoising Diffusion Probabilistic Model (3D DDPM) as a robust and universal solution for whole-body PET image denoising.

Methods

The proposed 3D DDPM gradually injected noise into the images during the forward diffusion phase, allowing the model to learn to reconstruct the clean data during the reverse diffusion process. A 3D convolutional network was trained using high-quality data from the Biograph Vision Quadra PET/CT scanner to generate the score function, enabling the model to capture accurate PET distribution information extracted from the total-body datasets. The trained 3D DDPM was evaluated on datasets from four scanners, four tracer types, and six dose levels representing a broad spectrum of clinical scenarios.

Results

The proposed 3D DDPM consistently outperformed 2D DDPM, 3D UNet, and 3D GAN, demonstrating its superior denoising performance across all tested conditions. Additionally, the model’s uncertainty maps exhibited lower variance, reflecting its higher confidence in its outputs.

Conclusions

The proposed 3D DDPM can effectively handle various clinical settings, including variations in dose levels, scanners, and tracers, establishing it as a promising foundational model for PET image denoising. The trained 3D DDPM model of this work can be utilized off the shelf by researchers as a whole-body PET image denoising solution. The code and model are available at https://github.com/Miche11eU/PET-Image-Denoising-Using-3D-Diffusion-Model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用三维扩散模型对全身 PET 图像进行可靠去噪:对各种扫描仪、示踪剂和剂量水平进行评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.60
自引率
9.90%
发文量
392
审稿时长
3 months
期刊介绍: The European Journal of Nuclear Medicine and Molecular Imaging serves as a platform for the exchange of clinical and scientific information within nuclear medicine and related professions. It welcomes international submissions from professionals involved in the functional, metabolic, and molecular investigation of diseases. The journal's coverage spans physics, dosimetry, radiation biology, radiochemistry, and pharmacy, providing high-quality peer review by experts in the field. Known for highly cited and downloaded articles, it ensures global visibility for research work and is part of the EJNMMI journal family.
期刊最新文献
Evaluation of deep learning-based scatter correction on a long-axial field-of-view PET scanner A hybrid [18F]fluoropivalate PET-multiparametric MRI to detect and characterise brain tumour metastases based on a permissive environment for monocarboxylate transport Robust whole-body PET image denoising using 3D diffusion models: evaluation across various scanners, tracers, and dose levels Optimizing MR-based attenuation correction in hybrid PET/MR using deep learning: validation with a flatbed insert and consistent patient positioning Unveiling the potential of copper-61 vs. gallium-68 for SSTR PET imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1