High Performance Polyurethanes Derived from Aromatic Acetal-Containing Polyols Enabling Closed-Loop Recycling

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Chemistry Pub Date : 2025-01-30 DOI:10.1039/d4py01428f
Patrick Schara, Tankut Türel, Anna Maria Cristadoro, Rint P Sijbesma, Željko Tomović
{"title":"High Performance Polyurethanes Derived from Aromatic Acetal-Containing Polyols Enabling Closed-Loop Recycling","authors":"Patrick Schara, Tankut Türel, Anna Maria Cristadoro, Rint P Sijbesma, Željko Tomović","doi":"10.1039/d4py01428f","DOIUrl":null,"url":null,"abstract":"Polyurethanes (PUs) are widely employed across diverse industries due to their versatility, durability, and mechanical strength. Enhancing their thermal and mechanical performance holds great potential for expanding their applicability and unlocking new market opportunities. This study addresses two key challenges: limited availability of aromatic polyols for high-performance PUs and their recycling issues. Incorporation of aromatic content in polyether polyols has traditionally been difficult using conventional methods. Herein, we developed three novel aromatic acetal-containing polyols through a green and solvent-free protocol via the polycondensation of aldehydes and diols, using acidic heterogeneous catalysts. Resulting polyols, with tailored aromatic content, significantly improved the mechanical strength of PUs, while maintaining low viscosity and easy processability. Besides that, PUs synthesized from these polyols exhibited excellent thermal stability and remarkable water resistance under neutral conditions. Additionally, these materials demonstrated efficient closed-loop recyclability through a novel transacetalization-based depolymerization under mild acidic conditions, yielding high purity monomers in good yields. This work introduces innovative aromatic polyacetal polyols, offering a sustainable approach to high-performance PUs. The approach also leverages the wide availability of diols and aldehydes, enabling the design of PUs with superior properties and closed-loop recycling.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"54 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4py01428f","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polyurethanes (PUs) are widely employed across diverse industries due to their versatility, durability, and mechanical strength. Enhancing their thermal and mechanical performance holds great potential for expanding their applicability and unlocking new market opportunities. This study addresses two key challenges: limited availability of aromatic polyols for high-performance PUs and their recycling issues. Incorporation of aromatic content in polyether polyols has traditionally been difficult using conventional methods. Herein, we developed three novel aromatic acetal-containing polyols through a green and solvent-free protocol via the polycondensation of aldehydes and diols, using acidic heterogeneous catalysts. Resulting polyols, with tailored aromatic content, significantly improved the mechanical strength of PUs, while maintaining low viscosity and easy processability. Besides that, PUs synthesized from these polyols exhibited excellent thermal stability and remarkable water resistance under neutral conditions. Additionally, these materials demonstrated efficient closed-loop recyclability through a novel transacetalization-based depolymerization under mild acidic conditions, yielding high purity monomers in good yields. This work introduces innovative aromatic polyacetal polyols, offering a sustainable approach to high-performance PUs. The approach also leverages the wide availability of diols and aldehydes, enabling the design of PUs with superior properties and closed-loop recycling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
期刊最新文献
In memoriam Acad. Prof. Dr Bogdan Simionescu (1948–2024) Correction: Towards the synthesis of polythiazolines: a post-polymerization approach High Performance Polyurethanes Derived from Aromatic Acetal-Containing Polyols Enabling Closed-Loop Recycling Poly(butylene succinate) filaments for fused deposition modelling (FDM) 3D-printing Polymethylene with Cage Silsesquioxane: Densely Grafted Structure Prevents Side-Chain Crystallization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1