Temperature‐Mediated Controllable Adhesive Hydrogels with Remarkable Wet Adhesion Properties Based on Dynamic Interchain Interactions

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2025-01-30 DOI:10.1002/adfm.202423099
Che Wu, Yan Cheng, Kai Wang, Yimeng Ni, Wenyi Wang, Ruizi Wu, Jianying Huang, Yuekun Lai
{"title":"Temperature‐Mediated Controllable Adhesive Hydrogels with Remarkable Wet Adhesion Properties Based on Dynamic Interchain Interactions","authors":"Che Wu, Yan Cheng, Kai Wang, Yimeng Ni, Wenyi Wang, Ruizi Wu, Jianying Huang, Yuekun Lai","doi":"10.1002/adfm.202423099","DOIUrl":null,"url":null,"abstract":"With the increasing demand in fields such as wearable sensors, soft robotics, tissue engineering, and wound dressings, the development of hydrogels with strong adhesion in wet environments has become a critical focus of research. However, most existing adhesive materials lack the ability to transition rapidly and reversibly between the adhesive and nonadhesive states, and their adhesion is often limited to a single wet environment. In this study, a smart interfacial adhesive hydrogel with tunable adhesion properties across diverse liquid environments is presented. By tailoring interchain interactions and leveraging electrostatically induced traction between hydrophilic and hydrophobic chain segments, the hydrogel achieves reversible adhesion modulation in response to temperature changes while maintaining strong wet adhesion. Notably, its adhesive strength at elevated temperatures (45 °C) is approximately three times greater than at lower temperatures (5 °C). The adhesive hydrogel exhibits an adhesive strength of 227 kPa in aqueous environments and 213 kPa in oil‐containing environments. This innovative design strategy enables the hydrogel to exhibit broad switchable, and dynamic wet adhesion capabilities, unlocking significant potential for a wide range of applications.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"49 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202423099","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing demand in fields such as wearable sensors, soft robotics, tissue engineering, and wound dressings, the development of hydrogels with strong adhesion in wet environments has become a critical focus of research. However, most existing adhesive materials lack the ability to transition rapidly and reversibly between the adhesive and nonadhesive states, and their adhesion is often limited to a single wet environment. In this study, a smart interfacial adhesive hydrogel with tunable adhesion properties across diverse liquid environments is presented. By tailoring interchain interactions and leveraging electrostatically induced traction between hydrophilic and hydrophobic chain segments, the hydrogel achieves reversible adhesion modulation in response to temperature changes while maintaining strong wet adhesion. Notably, its adhesive strength at elevated temperatures (45 °C) is approximately three times greater than at lower temperatures (5 °C). The adhesive hydrogel exhibits an adhesive strength of 227 kPa in aqueous environments and 213 kPa in oil‐containing environments. This innovative design strategy enables the hydrogel to exhibit broad switchable, and dynamic wet adhesion capabilities, unlocking significant potential for a wide range of applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
麦克林
NIPAM
阿拉丁
phosphotungsten-polyoxometallic acid
阿拉丁
ferric (III)
阿拉丁
sodium dodecyl sulfate (SDS)
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Breaking 20% Efficiency of all-Polymer Solar Cells via Benzo[1,2-d:4,5-d′]Bisthiazole-Based Terpolymer Donor Strategy for Fine Morphology Optimization On-Device Synthesis of PdTe Thin Flakes with 2D Nature of Superconductivity Patterning-Induced Encapsulation of Stable Perovskite Quantum Dots with Controllable Morphology for Information Encryption All Irradiance-Applicable, Perovskite Solar Cells-Powered Flexible Self-Sustaining Sensor Nodes for Wireless Internet-of-Things Heterogeneous Integration of Single-Crystal SrRuO3 Films with Large Spin Hall Conductivity on Silicon for Spintronic Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1