{"title":"Mechano-electrical transduction components TMC1-CIB2 undergo a Ca2+-induced conformational change linked to hearing loss","authors":"Shaoxuan Wu, Lin Lin, Qiaoyu Hu, Xuebo Yao, Hongyang Wang, Shuang Liu, Qingling Liu, Yuehui Xi, Yuzhe Lin, Jianqiao Gong, Ruixing Hu, Wei Zhan, Yi Luo, Guang He, Zhijun Liu, Wei Xiong, Qiuju Wang, Zhigang Xu, Fang Bai, Qing Lu","doi":"10.1016/j.devcel.2025.01.004","DOIUrl":null,"url":null,"abstract":"<em>TMC1</em>, a unique causative gene associated with deafness, exhibits variants with autosomal dominant and recessive inheritance patterns. <em>TMC1</em> codes for the transmembrane channel-like protein 1 (TMC1), a key component of the mechano-electrical transduction (MET) machinery for hearing. However, the molecular mechanism of Ca<sup>2+</sup> regulation in MET remains unclear. Calcium and integrin-binding protein 2 (CIB2), another MET component associated with deafness, can bind with Ca<sup>2+</sup>. Our study shows that TMC1-CIB2 complex undergoes a Ca<sup>2+</sup>-induced conformational change. We identified a vertebrate-specific binding site on TMC1 that interacts with <em>apo</em> CIB2, linked with hearing loss. Using an <em>ex vivo</em> mouse organotypic cochlea model, we demonstrated that disruption of the calcium-binding site of CIB2 perturbs the MET channel conductivity. After systematically analyzing the hearing loss variants, we observed dominant mutations of TMC1 cluster around the putative ion pore or at the binding interfaces with CIB2. These findings elucidate the molecular mechanisms underlying <em>TMC1</em>-linked hearing loss.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"40 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.01.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
TMC1, a unique causative gene associated with deafness, exhibits variants with autosomal dominant and recessive inheritance patterns. TMC1 codes for the transmembrane channel-like protein 1 (TMC1), a key component of the mechano-electrical transduction (MET) machinery for hearing. However, the molecular mechanism of Ca2+ regulation in MET remains unclear. Calcium and integrin-binding protein 2 (CIB2), another MET component associated with deafness, can bind with Ca2+. Our study shows that TMC1-CIB2 complex undergoes a Ca2+-induced conformational change. We identified a vertebrate-specific binding site on TMC1 that interacts with apo CIB2, linked with hearing loss. Using an ex vivo mouse organotypic cochlea model, we demonstrated that disruption of the calcium-binding site of CIB2 perturbs the MET channel conductivity. After systematically analyzing the hearing loss variants, we observed dominant mutations of TMC1 cluster around the putative ion pore or at the binding interfaces with CIB2. These findings elucidate the molecular mechanisms underlying TMC1-linked hearing loss.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.