Temperature-induced swelling and unwinding of double-stranded DNA

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2025-01-30 DOI:10.1039/d4cp04425h
Tingting Liu, Kai Liu, Xuankang Mou, Shiben Li
{"title":"Temperature-induced swelling and unwinding of double-stranded DNA","authors":"Tingting Liu, Kai Liu, Xuankang Mou, Shiben Li","doi":"10.1039/d4cp04425h","DOIUrl":null,"url":null,"abstract":"We utilized all-atom molecular dynamics simulations to investigate the temperature-induced swelling and unwinding of double-stranded DNA (dsDNA). We adopted three helical parameters, specifically helical twist, helical rise, and diameter, to quantitatively describe the deformations and elastic properties associated with swelling and unwinding processes within an orthogonal cylindrical coordinate system. The results indicate that as temperature increases, dsDNA experiences a weak swelling accompanied by unwinding. This is associated with a slight increase in helical rise, while the helical diameter almost remains unchanged and the helical twist decreases. We evaluated all potential pathways for unwinding and elucidated that twist-diameter coupling drives the unwinding from an entropy perspective. On the other hand, we employed the rigid base pair model to examine the swelling and unwinding elasticities, with a focus on the stiffnesses of twist and diameter. The results suggest that the temperature induces variations in the local twist and diameter elasticities, as well as their couplings of dsDNA, which are closely related to the distance between the base pairs, attributed to its thermal fluctuations and correlations. The global twist elasticity reduces as the temperature rises; nonetheless, the global diameter elasticity and the twist-diameter coupling can be considered as constants, which indicate independence from the increasing temperature.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"26 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp04425h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We utilized all-atom molecular dynamics simulations to investigate the temperature-induced swelling and unwinding of double-stranded DNA (dsDNA). We adopted three helical parameters, specifically helical twist, helical rise, and diameter, to quantitatively describe the deformations and elastic properties associated with swelling and unwinding processes within an orthogonal cylindrical coordinate system. The results indicate that as temperature increases, dsDNA experiences a weak swelling accompanied by unwinding. This is associated with a slight increase in helical rise, while the helical diameter almost remains unchanged and the helical twist decreases. We evaluated all potential pathways for unwinding and elucidated that twist-diameter coupling drives the unwinding from an entropy perspective. On the other hand, we employed the rigid base pair model to examine the swelling and unwinding elasticities, with a focus on the stiffnesses of twist and diameter. The results suggest that the temperature induces variations in the local twist and diameter elasticities, as well as their couplings of dsDNA, which are closely related to the distance between the base pairs, attributed to its thermal fluctuations and correlations. The global twist elasticity reduces as the temperature rises; nonetheless, the global diameter elasticity and the twist-diameter coupling can be considered as constants, which indicate independence from the increasing temperature.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
Unusual phase transition mechanism induced by shear strain in Si2BN planar structures and comparison with graphene: an ab-initio DFT study Temperature-induced swelling and unwinding of double-stranded DNA Impact of Fluorine-Induced Effects on Co-Sensitization Systems in Dye-Sensitized Solar Cells Time-resolved measurements of subpicosecond excited-state lifetimes of high-lying Rydberg states in pyrrole An ab-initio approach to investigate the impact of Hubbard U correction on the physical properties of Gd2NiMnO6 double perovskite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1