Knowledge Distillation on Graphs: A Survey

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS ACM Computing Surveys Pub Date : 2025-01-30 DOI:10.1145/3711121
Yijun Tian, Shichao Pei, Xiangliang Zhang, Chuxu Zhang, Nitesh Chawla
{"title":"Knowledge Distillation on Graphs: A Survey","authors":"Yijun Tian, Shichao Pei, Xiangliang Zhang, Chuxu Zhang, Nitesh Chawla","doi":"10.1145/3711121","DOIUrl":null,"url":null,"abstract":"Graph Neural Networks (GNNs) have received significant attention for demonstrating their capability to handle graph data. However, they are difficult to be deployed in resource-limited devices because of model sizes and scalability constraints imposed by the multi-hop data dependency. In addition, real-world graphs usually possess complex structural information and features. Therefore, to improve the applicability of GNNs and fully encode the complicated topological information, Knowledge Distillation on Graphs (KDG) has been introduced to build a smaller but effective model, leading to model compression and performance improvement. Recently, KDG has achieved considerable progress, with many studies proposed. In this survey, we systematically review these works. Specifically, we first introduce the challenges and bases of KDG, then categorize and summarize the existing work of KDG by answering the following three questions: 1) what to distillate, 2) who to whom, and 3) how to distillate. We offer in-depth comparisons and elucidate the strengths and weaknesses of each design. Finally, we share our thoughts on future research directions.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"53 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3711121","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Graph Neural Networks (GNNs) have received significant attention for demonstrating their capability to handle graph data. However, they are difficult to be deployed in resource-limited devices because of model sizes and scalability constraints imposed by the multi-hop data dependency. In addition, real-world graphs usually possess complex structural information and features. Therefore, to improve the applicability of GNNs and fully encode the complicated topological information, Knowledge Distillation on Graphs (KDG) has been introduced to build a smaller but effective model, leading to model compression and performance improvement. Recently, KDG has achieved considerable progress, with many studies proposed. In this survey, we systematically review these works. Specifically, we first introduce the challenges and bases of KDG, then categorize and summarize the existing work of KDG by answering the following three questions: 1) what to distillate, 2) who to whom, and 3) how to distillate. We offer in-depth comparisons and elucidate the strengths and weaknesses of each design. Finally, we share our thoughts on future research directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
期刊最新文献
ENDEMIC: End-to-End Network Disruptions - Examining Middleboxes, Issues, and Countermeasures - A Survey Making Sense of Big Data in Intelligent Transportation Systems: Current Trends, Challenges and Future Directions Artificial Intelligence as a Service (AIaaS) for Cloud, Fog and the Edge: State-of-the-Art Practices Natural Language Understanding and Inference with MLLM in Visual Question Answering: A Survey Knowledge Distillation on Graphs: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1