{"title":"Knowledge Distillation on Graphs: A Survey","authors":"Yijun Tian, Shichao Pei, Xiangliang Zhang, Chuxu Zhang, Nitesh Chawla","doi":"10.1145/3711121","DOIUrl":null,"url":null,"abstract":"Graph Neural Networks (GNNs) have received significant attention for demonstrating their capability to handle graph data. However, they are difficult to be deployed in resource-limited devices because of model sizes and scalability constraints imposed by the multi-hop data dependency. In addition, real-world graphs usually possess complex structural information and features. Therefore, to improve the applicability of GNNs and fully encode the complicated topological information, Knowledge Distillation on Graphs (KDG) has been introduced to build a smaller but effective model, leading to model compression and performance improvement. Recently, KDG has achieved considerable progress, with many studies proposed. In this survey, we systematically review these works. Specifically, we first introduce the challenges and bases of KDG, then categorize and summarize the existing work of KDG by answering the following three questions: 1) what to distillate, 2) who to whom, and 3) how to distillate. We offer in-depth comparisons and elucidate the strengths and weaknesses of each design. Finally, we share our thoughts on future research directions.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"53 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3711121","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Graph Neural Networks (GNNs) have received significant attention for demonstrating their capability to handle graph data. However, they are difficult to be deployed in resource-limited devices because of model sizes and scalability constraints imposed by the multi-hop data dependency. In addition, real-world graphs usually possess complex structural information and features. Therefore, to improve the applicability of GNNs and fully encode the complicated topological information, Knowledge Distillation on Graphs (KDG) has been introduced to build a smaller but effective model, leading to model compression and performance improvement. Recently, KDG has achieved considerable progress, with many studies proposed. In this survey, we systematically review these works. Specifically, we first introduce the challenges and bases of KDG, then categorize and summarize the existing work of KDG by answering the following three questions: 1) what to distillate, 2) who to whom, and 3) how to distillate. We offer in-depth comparisons and elucidate the strengths and weaknesses of each design. Finally, we share our thoughts on future research directions.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.