Ozone Aging and Protein Corona Adsorption Exacerbate Inflammatory Effects of Carbon Black on Macrophages and Induce Blood-Testis Barrier Dysfunction in Mice
{"title":"Ozone Aging and Protein Corona Adsorption Exacerbate Inflammatory Effects of Carbon Black on Macrophages and Induce Blood-Testis Barrier Dysfunction in Mice","authors":"Qingchun Wu, Jianzhong Cao, Yang Song","doi":"10.1039/d4en01166j","DOIUrl":null,"url":null,"abstract":"Carbon black (CB) is a man-made, pure carbon particle, with numerous applications in a variety of commercial and consumer products. Upon inhalation, it may bioaccumulate across various organs, raising serious health concerns. However, the biotransformation processes that CB undergoes can alter its chemical and physical properties, thereby affecting its toxicities. When airborne CB is exposed to UV radiation, it undergoes an aging process. Upon entering physiological environments, biomacromolecules, such as proteins, rapidly adsorb onto CB’s surface, forming a protein corona that mediates cellular interactions. Our study reveals that ozone aging influences CB’s adsorption in mouse plasma. Exposure to both pristine CB and ozone-aged carbon black (CB-O3) triggers inflammatory responses in J774A.1 macrophage cell lines and activates the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Notably, ozone aging and plasma protein corona adsorption enhance CB uptake by J774A.1 cells, thereby increasing its cytotoxicity. Mechanistically, CB and CB-O3 exposure induce lysosomal damage and dysfunction, leading to cathepsin B release, which in turn activates the NLRP3 inflammasome. Importantly, this activation correlates with a reduction in blood-testis barrier-associated protein expression. In vivo experiments confirm that prolonged exposure to CB and CB-O3 activates the NLRP3 inflammasome within the testes, leading to a significant compromise of the blood-testis barrier integrity in mice.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"74 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en01166j","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon black (CB) is a man-made, pure carbon particle, with numerous applications in a variety of commercial and consumer products. Upon inhalation, it may bioaccumulate across various organs, raising serious health concerns. However, the biotransformation processes that CB undergoes can alter its chemical and physical properties, thereby affecting its toxicities. When airborne CB is exposed to UV radiation, it undergoes an aging process. Upon entering physiological environments, biomacromolecules, such as proteins, rapidly adsorb onto CB’s surface, forming a protein corona that mediates cellular interactions. Our study reveals that ozone aging influences CB’s adsorption in mouse plasma. Exposure to both pristine CB and ozone-aged carbon black (CB-O3) triggers inflammatory responses in J774A.1 macrophage cell lines and activates the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Notably, ozone aging and plasma protein corona adsorption enhance CB uptake by J774A.1 cells, thereby increasing its cytotoxicity. Mechanistically, CB and CB-O3 exposure induce lysosomal damage and dysfunction, leading to cathepsin B release, which in turn activates the NLRP3 inflammasome. Importantly, this activation correlates with a reduction in blood-testis barrier-associated protein expression. In vivo experiments confirm that prolonged exposure to CB and CB-O3 activates the NLRP3 inflammasome within the testes, leading to a significant compromise of the blood-testis barrier integrity in mice.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis