{"title":"Battery Lifetime Prediction Using Surface Temperature Features from Early Cycle Data","authors":"Lawnardo Sugiarto, Zijie Huang, Yi-Chun Lu","doi":"10.1039/d4ee05179c","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries (LIBs) are highly sensitive to cycling conditions and show a nonlinear degradation pattern, typically noticeable in later stages. This affects the accuracy of most battery health prognostic models, especially those relying on long-term data collected under varying operational conditions. To tackle these challenges, we propose using statistical features extracted from the battery surface temperature during the first 10 cycles and developing a data-driven machine learning (ML) model for early-cycle lifetime prediction. Models are trained on each of the selected open-source datasets comprising 223 LIBs and tested on their respective datasets with non-stratified data splits using a balanced ratio. These datasets include lithium iron phosphate (LFP), nickel cobalt aluminum oxide (NCA), and nickel manganese cobalt oxide (NMC) cells, tested under different environmental temperatures and cycling protocols. In one comprehensive dataset, our model achieved competitive performance compared to state-of-the-art studies that rely on features extracted from much longer cycling data—up to ten times the duration. This work provides valuable insights into the strong correlation between early-cycle surface temperature and battery lifetime across various battery chemistries, cycling rates, and environmental temperatures.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"23 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee05179c","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium-ion batteries (LIBs) are highly sensitive to cycling conditions and show a nonlinear degradation pattern, typically noticeable in later stages. This affects the accuracy of most battery health prognostic models, especially those relying on long-term data collected under varying operational conditions. To tackle these challenges, we propose using statistical features extracted from the battery surface temperature during the first 10 cycles and developing a data-driven machine learning (ML) model for early-cycle lifetime prediction. Models are trained on each of the selected open-source datasets comprising 223 LIBs and tested on their respective datasets with non-stratified data splits using a balanced ratio. These datasets include lithium iron phosphate (LFP), nickel cobalt aluminum oxide (NCA), and nickel manganese cobalt oxide (NMC) cells, tested under different environmental temperatures and cycling protocols. In one comprehensive dataset, our model achieved competitive performance compared to state-of-the-art studies that rely on features extracted from much longer cycling data—up to ten times the duration. This work provides valuable insights into the strong correlation between early-cycle surface temperature and battery lifetime across various battery chemistries, cycling rates, and environmental temperatures.
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).