Monodisperse and homogeneous SiCNO/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2025-01-30 DOI:10.1016/j.apsusc.2025.162574
Deshuo Wang, Xin Xia, Yihan Li, Jingjiang Sun, Jianjiang He, Qingfu Wang, Wei Zhao
{"title":"Monodisperse and homogeneous SiCNO/C microspheres: A promising high-capacity and durable anode material for lithium-ion batteries","authors":"Deshuo Wang, Xin Xia, Yihan Li, Jingjiang Sun, Jianjiang He, Qingfu Wang, Wei Zhao","doi":"10.1016/j.apsusc.2025.162574","DOIUrl":null,"url":null,"abstract":"Silicon suboxide (SiO<sub>x</sub>, x &lt; 2) shows promise as an anode material for lithium-ion batteries due to its high lithium-ion storage capacity. However, its low conductivity and substantial volume changes, similar to those observed in monolithic silicon, restrict its practical application. To address these challenges, this study focuses on designing and synthesizing SiCNO/C composite materials. Employing the Stöber sol–gel method, organopolysilazane oligomers (OPSZ) and resorcinol formaldehyde resin (RF) are co-hydrolyzed and condensed to create uniform OPSZ/RF nanoparticles. Subsequently, high-temperature ceramization produces nitrogen-doped carbon-silicon composites (SiCNO/C). This approach enables the preparation of composite nanomaterials with adjustable sizes (200–1000 nm) and controllable carbon content (20–60 wt%). Nitrogen doping levels range from 4-10 wt%, ensuring uniform distribution of C, Si, N, and O elements within the composite microspheres. Battery performance tests confirm that the presence of a substantial amount of free carbon and effective nitrogen doping increase the active sites on the material surface, resulting in SiCNO/C composites exhibiting high specific capacity and excellent cycling stability as anode materials for lithium-ion batteries. Specifically, the SiCNO/C-1 sample demonstrates an initial discharge capacity of 1309.0 mAh/g, retains 797.6 mAh/g after 100 cycles at 100 mA/g, and maintains 587.0 mAh/g after 400 cycles at 1 A/g. The composite also shows a low volume expansion of 47.7 % after 100 cycles. These results indicate that SiCNO/C microspheres are promising high-capacity and durable anode materials for lithium-ion batteries.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"28 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.162574","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon suboxide (SiOx, x < 2) shows promise as an anode material for lithium-ion batteries due to its high lithium-ion storage capacity. However, its low conductivity and substantial volume changes, similar to those observed in monolithic silicon, restrict its practical application. To address these challenges, this study focuses on designing and synthesizing SiCNO/C composite materials. Employing the Stöber sol–gel method, organopolysilazane oligomers (OPSZ) and resorcinol formaldehyde resin (RF) are co-hydrolyzed and condensed to create uniform OPSZ/RF nanoparticles. Subsequently, high-temperature ceramization produces nitrogen-doped carbon-silicon composites (SiCNO/C). This approach enables the preparation of composite nanomaterials with adjustable sizes (200–1000 nm) and controllable carbon content (20–60 wt%). Nitrogen doping levels range from 4-10 wt%, ensuring uniform distribution of C, Si, N, and O elements within the composite microspheres. Battery performance tests confirm that the presence of a substantial amount of free carbon and effective nitrogen doping increase the active sites on the material surface, resulting in SiCNO/C composites exhibiting high specific capacity and excellent cycling stability as anode materials for lithium-ion batteries. Specifically, the SiCNO/C-1 sample demonstrates an initial discharge capacity of 1309.0 mAh/g, retains 797.6 mAh/g after 100 cycles at 100 mA/g, and maintains 587.0 mAh/g after 400 cycles at 1 A/g. The composite also shows a low volume expansion of 47.7 % after 100 cycles. These results indicate that SiCNO/C microspheres are promising high-capacity and durable anode materials for lithium-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Poly(3,4-ethylenedioxythiophene)-supported Pd4Ru2 synergistically promote electrocatalytic oxidation of ethylene glycol Ratiometric SERS sensor for sensitive quantification of methicillin-resistant Staphylococcus aureus using Ti3C2@AuNP films and aptamer-based tags A first-principles study into the development of a bifunctional, single-atom catalyst for nickel loading on melon carbon nitride Enhanced magnetic ordering, and microwave-shielding and photocatalytic performance in hydrogenated ZnO nanoparticles Palladium immobilized on lignin-based hypercrosslinked polymers as robust and efficient heterogeneous catalyst for Suzuki-Miyaura reactions in water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1