Zinc Acetate/Ionic Liquid Hybrid Catalysts for the Synthesis of Dimethyl Carbonate Through Urea Methanolysis: Kinetics, Molecular Dynamic Simulation, and Mechanism Clarification

IF 3.8 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2025-01-30 DOI:10.1021/acs.iecr.4c03668
Ehsan Salehi, Fakhrosadat Mirnezami, Golara Nikravesh, Masoud Mandooie, Seyed Faridedin Rafie, Nidal Abu-Zahra
{"title":"Zinc Acetate/Ionic Liquid Hybrid Catalysts for the Synthesis of Dimethyl Carbonate Through Urea Methanolysis: Kinetics, Molecular Dynamic Simulation, and Mechanism Clarification","authors":"Ehsan Salehi, Fakhrosadat Mirnezami, Golara Nikravesh, Masoud Mandooie, Seyed Faridedin Rafie, Nidal Abu-Zahra","doi":"10.1021/acs.iecr.4c03668","DOIUrl":null,"url":null,"abstract":"In this study, 1-butyl-3-methylimidazolium acetate was synthesized and then mixed with zinc acetate as a novel hybrid catalyst for the synthesis of dimethyl carbonate (DMC) through urea methanolysis. The Fourier transform infrared analysis (FT-IR) showed that a connection formed between the cation part of the ionic liquid (IL) and zinc acetate, confirming the successful synthesis of the zinc acetate/IL catalyst. The effects of the urea-to-methanol molar ratio and different weight ratios of ILs to Zn-based salt on the DMC yield were studied using an equipped batch catalyst-test setup. Generally, complete urea conversion was achieved under the optimal operating conditions, i.e., a 1:36.6 molar ratio of urea/methanol, 3.0 g of catalyst, 190 °C, and 8 h of reaction time. 1-Butyl-3-methylimidazolium acetate-promoted zinc acetate with a weight ratio of 1:2 indicated a superior DMC yield (∼15%). Reaction kinetic results disclosed that 1-butyl-3-methylimidazolium acetate has a strong promoting effect on the Zn-based catalyst for DMC production, especially at the early times of the reaction. The recyclability tests showed that zinc, the hybrid catalyst, remains stable and efficient even after four recovery/reuse runs. The hydrogen bonding between the C<sub>2</sub>–H in the cation of IL and hydrogen bond acceptor groups in zinc acetate plays a significant role in promoting the reaction. Molecular dynamics (MD) simulations were applied to investigate energy parameters, including potential, kinetics, interactions, and bonding energies, in systems involving methanol and urea, with Zn-based salts and ILs. There is an agreement between simulation and experimental results, showing that the zinc acetate/ionic liquid catalyst can create the most effective catalytic environment for urea methanolysis, enhancing DMC production. From an industrial viewpoint, equipment size and expenditures can be favorably reduced by promoting the reaction kinetics.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"22 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c03668","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, 1-butyl-3-methylimidazolium acetate was synthesized and then mixed with zinc acetate as a novel hybrid catalyst for the synthesis of dimethyl carbonate (DMC) through urea methanolysis. The Fourier transform infrared analysis (FT-IR) showed that a connection formed between the cation part of the ionic liquid (IL) and zinc acetate, confirming the successful synthesis of the zinc acetate/IL catalyst. The effects of the urea-to-methanol molar ratio and different weight ratios of ILs to Zn-based salt on the DMC yield were studied using an equipped batch catalyst-test setup. Generally, complete urea conversion was achieved under the optimal operating conditions, i.e., a 1:36.6 molar ratio of urea/methanol, 3.0 g of catalyst, 190 °C, and 8 h of reaction time. 1-Butyl-3-methylimidazolium acetate-promoted zinc acetate with a weight ratio of 1:2 indicated a superior DMC yield (∼15%). Reaction kinetic results disclosed that 1-butyl-3-methylimidazolium acetate has a strong promoting effect on the Zn-based catalyst for DMC production, especially at the early times of the reaction. The recyclability tests showed that zinc, the hybrid catalyst, remains stable and efficient even after four recovery/reuse runs. The hydrogen bonding between the C2–H in the cation of IL and hydrogen bond acceptor groups in zinc acetate plays a significant role in promoting the reaction. Molecular dynamics (MD) simulations were applied to investigate energy parameters, including potential, kinetics, interactions, and bonding energies, in systems involving methanol and urea, with Zn-based salts and ILs. There is an agreement between simulation and experimental results, showing that the zinc acetate/ionic liquid catalyst can create the most effective catalytic environment for urea methanolysis, enhancing DMC production. From an industrial viewpoint, equipment size and expenditures can be favorably reduced by promoting the reaction kinetics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Continuous-Time Formulation for Integrated Refinery Planning and Diesel Blending Scheduling Problems Stressing the AMP/PZ-Based Solvent CESAR1─Pilot Plant Testing on the Effect of O2, NO2, and Regeneration Temperature on Solvent Degradation Regulating Surface Acidity/Basicity by Hybrid Acid/Base Carrier for Selective Hydrogenation Isobutyraldehyde Molecular Dynamics Simulations of Interfacial Tensions and Contact Angles of the Nitrogen+Oil+Brine+Rock System In Situ Construction of Bi12O17Cl2/Bi2S3 S-Scheme Heterojunctions with Enriched Oxygen Vacancies to Enhance Photocatalytic Activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1