{"title":"Propensity of Water Self-Ions at Air(Oil)–Water Interfaces Revealed by Deep Potential Molecular Dynamics with Enhanced Sampling","authors":"Pengchao Zhang, Xuefei Xu","doi":"10.1021/acs.langmuir.4c05004","DOIUrl":null,"url":null,"abstract":"The preference of water self-ions (hydronium and hydroxide) toward air/oil–water interfaces is one of the hottest topics in water research due to its importance for understanding properties, phenomena, and reactions of interfaces. In this work, we performed enhanced-sampling molecular dynamics simulations based on state-of-the-art neural network potentials with approximate M06-2X accuracy to investigate the propensity of hydronium and hydroxide ions at air/oil(decane)–water interfaces, which can simultaneously describe well the water autoionization process forming these ions, the recombination of ions, and the ionic distribution along the normal distance to the interface by employing a set of appropriate Voronoi collective variables. A stable ionic double-layer distribution is observed near the air–water interface, while the distribution is different at oil–water interfaces, where hydronium tends to be repelled from the interface into the bulk water, whereas hydroxide, with an interfacial stabilization free energy of −0.6 kcal/mol, is enriched in the interfacial layer. Through simulations of oil droplets in water, we further reveal that the interfacial propensity of hydroxide ions is caused by the positive charge distribution of the oil–water interface contributed by hydrogens of the dangling OH bonds of the interfacial water layer and the outermost layer decane molecules lying flat on the droplet. The present results may aid in understanding the acid–base nature of water interfaces with wide applications.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"23 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c05004","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The preference of water self-ions (hydronium and hydroxide) toward air/oil–water interfaces is one of the hottest topics in water research due to its importance for understanding properties, phenomena, and reactions of interfaces. In this work, we performed enhanced-sampling molecular dynamics simulations based on state-of-the-art neural network potentials with approximate M06-2X accuracy to investigate the propensity of hydronium and hydroxide ions at air/oil(decane)–water interfaces, which can simultaneously describe well the water autoionization process forming these ions, the recombination of ions, and the ionic distribution along the normal distance to the interface by employing a set of appropriate Voronoi collective variables. A stable ionic double-layer distribution is observed near the air–water interface, while the distribution is different at oil–water interfaces, where hydronium tends to be repelled from the interface into the bulk water, whereas hydroxide, with an interfacial stabilization free energy of −0.6 kcal/mol, is enriched in the interfacial layer. Through simulations of oil droplets in water, we further reveal that the interfacial propensity of hydroxide ions is caused by the positive charge distribution of the oil–water interface contributed by hydrogens of the dangling OH bonds of the interfacial water layer and the outermost layer decane molecules lying flat on the droplet. The present results may aid in understanding the acid–base nature of water interfaces with wide applications.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).