An Implicit Solvation Model for Binding Free Energy Estimation in Nonaqueous Solution.

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL The Journal of Physical Chemistry B Pub Date : 2025-02-13 Epub Date: 2025-01-29 DOI:10.1021/acs.jpcb.4c08592
David Elsing, Wolfgang Wenzel, Mariana Kozlowska
{"title":"An Implicit Solvation Model for Binding Free Energy Estimation in Nonaqueous Solution.","authors":"David Elsing, Wolfgang Wenzel, Mariana Kozlowska","doi":"10.1021/acs.jpcb.4c08592","DOIUrl":null,"url":null,"abstract":"<p><p>Implicit solvation models permit the approximate description of solute-solvent interactions, where water is the most often considered solvent due to its relevance in biological systems. The use of other solvents is less common but is relevant for applications such as in nuclear magnetic resonance (NMR) or chromatography. As an example, chloroform is commonly used in anisotropic NMR to measure residual dipolar couplings (RDCs) of chiral analytes weakly aligned by an alignment medium. They can be calculated from molecular dynamics (MD) simulations with explicit solvent, but it is computationally expensive, because tens of microseconds-long MD trajectories should be collected. Here, we develop a computational protocol and numerical implementation for binding free energies of rigid organic molecules to poly-γ-benzyl-l-glutamate using an implicit solvation model of chloroform. The model parameters are fit to alchemical binding free energies obtained from MD simulations in explicit chloroform and compared to the MD results and another implicit solvation model. Possible applications of the method are docking or Monte Carlo simulations based on a physically meaningful scoring function for the fast prediction of interaction poses of ligands for selective binding or the alignment of analytes.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":"1874-1889"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c08592","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Implicit solvation models permit the approximate description of solute-solvent interactions, where water is the most often considered solvent due to its relevance in biological systems. The use of other solvents is less common but is relevant for applications such as in nuclear magnetic resonance (NMR) or chromatography. As an example, chloroform is commonly used in anisotropic NMR to measure residual dipolar couplings (RDCs) of chiral analytes weakly aligned by an alignment medium. They can be calculated from molecular dynamics (MD) simulations with explicit solvent, but it is computationally expensive, because tens of microseconds-long MD trajectories should be collected. Here, we develop a computational protocol and numerical implementation for binding free energies of rigid organic molecules to poly-γ-benzyl-l-glutamate using an implicit solvation model of chloroform. The model parameters are fit to alchemical binding free energies obtained from MD simulations in explicit chloroform and compared to the MD results and another implicit solvation model. Possible applications of the method are docking or Monte Carlo simulations based on a physically meaningful scoring function for the fast prediction of interaction poses of ligands for selective binding or the alignment of analytes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
期刊最新文献
Issue Publication Information Issue Editorial Masthead How Rigid Are Anthranilamide Molecular Electrets? An Implicit Solvation Model for Binding Free Energy Estimation in Nonaqueous Solution. In Silico Discovery of SARS-CoV-2 Main Protease Inhibitors Using Docking, Molecular Dynamics, and Fragment Molecular Orbital Calculations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1