Bicyclic nucleoside analogues: synthesis of thiazolopyrimidine-based nucleosides via a copper-catalysed tandem reaction of 5-iodocytidine with isothiocyanates.
Anjana Jyothilekshmi, Reshma Elizabeth Lukose, Angel Johny, Uthara Kaloor, Megha Nellyadan, Sheba Ann Babu, Jubi John
{"title":"Bicyclic nucleoside analogues: synthesis of thiazolopyrimidine-based nucleosides <i>via</i> a copper-catalysed tandem reaction of 5-iodocytidine with isothiocyanates.","authors":"Anjana Jyothilekshmi, Reshma Elizabeth Lukose, Angel Johny, Uthara Kaloor, Megha Nellyadan, Sheba Ann Babu, Jubi John","doi":"10.1039/d5ob00016e","DOIUrl":null,"url":null,"abstract":"<p><p>We have devised a copper-catalysed tandem annulation reaction to generate a new class of bicyclic nucleoside analogues (BCNAs), namely, amino-substituted thiazolopyrimidine ribonucleosides. The reaction between triacetyl-5-iodo-cytidine and an appropriate organic isothiocyanate in the presence of a Cu salt and ligand resulted in the formation of an amino-substituted thiazolopyrimidine moiety. This reaction was found to be compatible with a range of aliphatic and aromatic isothiocyanates, affording the corresponding products in moderate to good yields. The methodology was extended to diacetyl-2'-deoxy-5-iodo-cytidine and we could also establish the applicability of the methodology on a gram scale. Finally, acetyl deprotection of amino-substituted thiazolopyrimidine ribonucleosides was achieved by treatment with NH<sub>3</sub> in MeOH.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5ob00016e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
We have devised a copper-catalysed tandem annulation reaction to generate a new class of bicyclic nucleoside analogues (BCNAs), namely, amino-substituted thiazolopyrimidine ribonucleosides. The reaction between triacetyl-5-iodo-cytidine and an appropriate organic isothiocyanate in the presence of a Cu salt and ligand resulted in the formation of an amino-substituted thiazolopyrimidine moiety. This reaction was found to be compatible with a range of aliphatic and aromatic isothiocyanates, affording the corresponding products in moderate to good yields. The methodology was extended to diacetyl-2'-deoxy-5-iodo-cytidine and we could also establish the applicability of the methodology on a gram scale. Finally, acetyl deprotection of amino-substituted thiazolopyrimidine ribonucleosides was achieved by treatment with NH3 in MeOH.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.