Epigenetic modulation rescues neurodevelopmental deficits in Syngap1+/- mice.

IF 8 1区 医学 Q1 CELL BIOLOGY Aging Cell Pub Date : 2025-01-29 DOI:10.1111/acel.14408
Akash Kumar Singh, Ila Joshi, Neeharika M N Reddy, Sushmitha S Purushotham, M Eswaramoorthy, Madavan Vasudevan, Sourav Banerjee, James P Clement, Tapas K Kundu
{"title":"Epigenetic modulation rescues neurodevelopmental deficits in Syngap1<sup>+/-</sup> mice.","authors":"Akash Kumar Singh, Ila Joshi, Neeharika M N Reddy, Sushmitha S Purushotham, M Eswaramoorthy, Madavan Vasudevan, Sourav Banerjee, James P Clement, Tapas K Kundu","doi":"10.1111/acel.14408","DOIUrl":null,"url":null,"abstract":"<p><p>SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored. Here, we have found that the p300/CBP specific acetylation marks of histones are significantly repressed in the hippocampus of adolescent Syngap1<sup>+/-</sup> mice. Additionally, we observed decreased dendritic branching of newly born DCX<sup>+</sup> neurons in these mice, suggesting altered adult hippocampal neurogenesis. To establish the causal relationship of Syngap1<sup>+/-</sup> phenotype and the altered histone acetylation signature we have treated 2-4 months old Syngap1<sup>+/-</sup> mice with glucose-derived carbon nanosphere (CSP) conjugated potent small molecule activator (TTK21) of p300/CBP lysine acetyltransferase (CSP-TTK21). The enhancement of the p300/CBP specific acetylation marks of histones by CSP-TTK21 restored synaptic functions, increased dendritic branching of DCX<sup>+</sup> neurons, enables the capability to reorganise cortical circuits in response to change in the sensory stimuli, and improves behavioural measures in Syngap1<sup>+/-</sup> mice that are very closely comparable to wild type littermates. Further, hippocampal RNA-Seq analysis of these mice revealed that the expression of many critical genes such as Adcy1, Ntrk3, Egr1, and Foxj1 which are key regulators of synaptic plasticity and neurogenesis and are well associated with ID/ASD reversed upon CSP-TTK21 treatment. This study could be the first demonstration of the reversal of autistic behaviour and neural wiring upon the modulation of altered epigenetic modification(s).</p>","PeriodicalId":119,"journal":{"name":"Aging Cell","volume":" ","pages":"e14408"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/acel.14408","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored. Here, we have found that the p300/CBP specific acetylation marks of histones are significantly repressed in the hippocampus of adolescent Syngap1+/- mice. Additionally, we observed decreased dendritic branching of newly born DCX+ neurons in these mice, suggesting altered adult hippocampal neurogenesis. To establish the causal relationship of Syngap1+/- phenotype and the altered histone acetylation signature we have treated 2-4 months old Syngap1+/- mice with glucose-derived carbon nanosphere (CSP) conjugated potent small molecule activator (TTK21) of p300/CBP lysine acetyltransferase (CSP-TTK21). The enhancement of the p300/CBP specific acetylation marks of histones by CSP-TTK21 restored synaptic functions, increased dendritic branching of DCX+ neurons, enables the capability to reorganise cortical circuits in response to change in the sensory stimuli, and improves behavioural measures in Syngap1+/- mice that are very closely comparable to wild type littermates. Further, hippocampal RNA-Seq analysis of these mice revealed that the expression of many critical genes such as Adcy1, Ntrk3, Egr1, and Foxj1 which are key regulators of synaptic plasticity and neurogenesis and are well associated with ID/ASD reversed upon CSP-TTK21 treatment. This study could be the first demonstration of the reversal of autistic behaviour and neural wiring upon the modulation of altered epigenetic modification(s).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aging Cell
Aging Cell Biochemistry, Genetics and Molecular Biology-Cell Biology
自引率
2.60%
发文量
212
期刊介绍: Aging Cell is an Open Access journal that focuses on the core aspects of the biology of aging, encompassing the entire spectrum of geroscience. The journal's content is dedicated to publishing research that uncovers the mechanisms behind the aging process and explores the connections between aging and various age-related diseases. This journal aims to provide a comprehensive understanding of the biological underpinnings of aging and its implications for human health. The journal is widely recognized and its content is abstracted and indexed by numerous databases and services, which facilitates its accessibility and impact in the scientific community. These include: Academic Search (EBSCO Publishing) Academic Search Alumni Edition (EBSCO Publishing) Academic Search Premier (EBSCO Publishing) Biological Science Database (ProQuest) CAS: Chemical Abstracts Service (ACS) Embase (Elsevier) InfoTrac (GALE Cengage) Ingenta Select ISI Alerting Services Journal Citation Reports/Science Edition (Clarivate Analytics) MEDLINE/PubMed (NLM) Natural Science Collection (ProQuest) PubMed Dietary Supplement Subset (NLM) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) Web of Science (Clarivate Analytics) Being indexed in these databases ensures that the research published in Aging Cell is discoverable by researchers, clinicians, and other professionals interested in the field of aging and its associated health issues. This broad coverage helps to disseminate the journal's findings and contributes to the advancement of knowledge in geroscience.
期刊最新文献
Large-Scale Clustered Transcriptional Silencing Associated With Cellular Senescence. Activated mTOR Signaling in the RPE Drives EMT, Autophagy, and Metabolic Disruption, Resulting in AMD-Like Pathology in Mice. The Impact of Toll-Like Receptor 5 on Liver Function in Age-Related Metabolic Disorders. Enhanced Microglial Engulfment of Dopaminergic Synapses Induces Parkinson's Disease-Related Executive Dysfunction in an Acute LPC Infusion Targeting the mPFC. Exploring Lymph Node Stroma Ageing: Immune Implications and Future Directions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1