Enrique Mondragon-Estrada , Jane W. Newburger , Steven R. DePalma , Martina Brueckner , John Cleveland , Wendy K. Chung , Bruce D. Gelb , Elizabeth Goldmuntz , Donald J. Hagler Jr. , Hao Huang , Patrick McQuillen , Thomas A. Miller , Ashok Panigrahy , George A. Porter Jr. , Amy E. Roberts , Caitlin K. Rollins , Mark W. Russell , Martin Tristani-Firouzi , P. Ellen Grant , Kiho Im , Sarah U. Morton
{"title":"Noncoding variants and sulcal patterns in congenital heart disease: Machine learning to predict functional impact","authors":"Enrique Mondragon-Estrada , Jane W. Newburger , Steven R. DePalma , Martina Brueckner , John Cleveland , Wendy K. Chung , Bruce D. Gelb , Elizabeth Goldmuntz , Donald J. Hagler Jr. , Hao Huang , Patrick McQuillen , Thomas A. Miller , Ashok Panigrahy , George A. Porter Jr. , Amy E. Roberts , Caitlin K. Rollins , Mark W. Russell , Martin Tristani-Firouzi , P. Ellen Grant , Kiho Im , Sarah U. Morton","doi":"10.1016/j.isci.2024.111707","DOIUrl":null,"url":null,"abstract":"<div><div>Neurodevelopmental impairments associated with congenital heart disease (CHD) may arise from perturbations in brain developmental pathways, including the formation of sulcal patterns. While genetic factors contribute to sulcal features, the association of noncoding <em>de novo</em> variants (ncDNVs) with sulcal patterns in people with CHD remains poorly understood. Leveraging deep learning models, we examined the predicted impact of ncDNVs on gene regulatory signals. Predicted impact was compared between participants with CHD and a jointly called cohort without CHD. We then assessed the relationship of the predicted impact of ncDNVs with their sulcal folding patterns. ncDNVs predicted to increase H3K9me2 modification were associated with larger disruptions in right parietal sulcal patterns in the CHD cohort. Genes predicted to be regulated by these ncDNVs were enriched for functions related to neuronal development. This highlights the potential of deep learning models to generate hypotheses about the role of noncoding variants in brain development.</div></div>","PeriodicalId":342,"journal":{"name":"iScience","volume":"28 2","pages":"Article 111707"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772982/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iScience","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589004224029341","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neurodevelopmental impairments associated with congenital heart disease (CHD) may arise from perturbations in brain developmental pathways, including the formation of sulcal patterns. While genetic factors contribute to sulcal features, the association of noncoding de novo variants (ncDNVs) with sulcal patterns in people with CHD remains poorly understood. Leveraging deep learning models, we examined the predicted impact of ncDNVs on gene regulatory signals. Predicted impact was compared between participants with CHD and a jointly called cohort without CHD. We then assessed the relationship of the predicted impact of ncDNVs with their sulcal folding patterns. ncDNVs predicted to increase H3K9me2 modification were associated with larger disruptions in right parietal sulcal patterns in the CHD cohort. Genes predicted to be regulated by these ncDNVs were enriched for functions related to neuronal development. This highlights the potential of deep learning models to generate hypotheses about the role of noncoding variants in brain development.
期刊介绍:
Science has many big remaining questions. To address them, we will need to work collaboratively and across disciplines. The goal of iScience is to help fuel that type of interdisciplinary thinking. iScience is a new open-access journal from Cell Press that provides a platform for original research in the life, physical, and earth sciences. The primary criterion for publication in iScience is a significant contribution to a relevant field combined with robust results and underlying methodology. The advances appearing in iScience include both fundamental and applied investigations across this interdisciplinary range of topic areas. To support transparency in scientific investigation, we are happy to consider replication studies and papers that describe negative results.
We know you want your work to be published quickly and to be widely visible within your community and beyond. With the strong international reputation of Cell Press behind it, publication in iScience will help your work garner the attention and recognition it merits. Like all Cell Press journals, iScience prioritizes rapid publication. Our editorial team pays special attention to high-quality author service and to efficient, clear-cut decisions based on the information available within the manuscript. iScience taps into the expertise across Cell Press journals and selected partners to inform our editorial decisions and help publish your science in a timely and seamless way.