Sk Ashif Akram, Tyler Brown, Stephen Whitelam, Georg Meisl, Tuomas P J Knowles, Jeremy D Schmit
{"title":"Competing addition processes give distinct growth regimes in the assembly of 1D filaments.","authors":"Sk Ashif Akram, Tyler Brown, Stephen Whitelam, Georg Meisl, Tuomas P J Knowles, Jeremy D Schmit","doi":"10.1016/j.bpj.2025.01.018","DOIUrl":null,"url":null,"abstract":"<p><p>We present a model to describe the concentration-dependent growth of protein filaments. Our model contains two states, a low entropy/high affinity ordered state and a high entropy/low affinity disordered state. Consistent with experiments, our model shows a diffusion-limited linear growth regime at low concentration, followed by a concentration-independent plateau at intermediate concentrations, and rapid disordered precipitation at the highest concentrations. We show that growth in the linear and plateau regions is the result of two processes that compete amid the rapid binding and unbinding of non-specific states. The first process is the addition of ordered molecules during periods in which the end of the filament is free of incorrectly bound molecules. The second process is the capture of defects, which occurs when consecutive ordered additions occur on top of incorrectly bound molecules. We show that a key molecular property is the probability that a diffusive collision results in a correctly bound state. Small values of this probability suppress the defect capture growth mode, resulting in a plateau in the growth rate when incorrectly bound molecules become common enough to poison ordered growth. We show that conditions that non-specifically suppress or enhance intermolecular interactions, such as the addition of depletants or osmolytes, have opposite effects on the growth rate in the linear and plateau regimes. In the linear regime, stronger interactions promote growth by reducing dissolution events, but in the plateau regime stronger interactions inhibit growth by stabilizing incorrectly bound molecules.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.01.018","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a model to describe the concentration-dependent growth of protein filaments. Our model contains two states, a low entropy/high affinity ordered state and a high entropy/low affinity disordered state. Consistent with experiments, our model shows a diffusion-limited linear growth regime at low concentration, followed by a concentration-independent plateau at intermediate concentrations, and rapid disordered precipitation at the highest concentrations. We show that growth in the linear and plateau regions is the result of two processes that compete amid the rapid binding and unbinding of non-specific states. The first process is the addition of ordered molecules during periods in which the end of the filament is free of incorrectly bound molecules. The second process is the capture of defects, which occurs when consecutive ordered additions occur on top of incorrectly bound molecules. We show that a key molecular property is the probability that a diffusive collision results in a correctly bound state. Small values of this probability suppress the defect capture growth mode, resulting in a plateau in the growth rate when incorrectly bound molecules become common enough to poison ordered growth. We show that conditions that non-specifically suppress or enhance intermolecular interactions, such as the addition of depletants or osmolytes, have opposite effects on the growth rate in the linear and plateau regimes. In the linear regime, stronger interactions promote growth by reducing dissolution events, but in the plateau regime stronger interactions inhibit growth by stabilizing incorrectly bound molecules.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.