Deciphering the interplay between SETD2 mediated H3K36me3 and RNA N6-methyladenosine in clear cell renal cell carcinoma (ccRCC).

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Epigenetics Pub Date : 2025-12-01 Epub Date: 2025-01-28 DOI:10.1080/15592294.2025.2456418
Shafiq Shaikh, Xia Zhao, Ryan T Wagner, Xiaoyu Pan, Ryan A Hlady, Liguo Wang, Thai H Ho, Keith D Robertson
{"title":"Deciphering the interplay between SETD2 mediated H3K36me3 and RNA N6-methyladenosine in clear cell renal cell carcinoma (ccRCC).","authors":"Shafiq Shaikh, Xia Zhao, Ryan T Wagner, Xiaoyu Pan, Ryan A Hlady, Liguo Wang, Thai H Ho, Keith D Robertson","doi":"10.1080/15592294.2025.2456418","DOIUrl":null,"url":null,"abstract":"<p><p>RNA N6-methyladenosine (m6A) plays diverse roles in RNA metabolism and its deregulation contributes to tumor initiation and progression. Clear cell renal cell carcinoma (ccRCC) is characterized by near ubiquitous loss of <i>VHL</i> followed by mutations in epigenetic regulators <i>PBRM1</i>, <i>SETD2</i>, and <i>BAP1</i>. Mutations in <i>SETD2</i>, a histone H3 lysine 36 trimethylase (H3K36me3), are associated with reduced survival, greater metastatic propensity, and metabolic reprogramming. While m6A and H3K36me3 deregulation are separately implicated in renal tumorigenesis, H3K36me3 may participate directly in m6A targeting, but the m6A-H3K36me3 interplay has not been investigated in the context of ccRCC. Using RCC-relevant SETD2 isogenic knockout and rescue cell line models, we demonstrate a dynamic redistribution of m6A in the SETD2 depleted transcriptome, with a subset of transcripts involved in metabolic reprogramming demonstrating SETD2 dependent m6A and expression level changes. Using a panel of six histone modifications we show that m6A redistributes to regions enriched in gained active enhancers upon <i>SETD2</i> inactivation. Finally, we demonstrate a reversal of transcriptomic programs involved in SETD2 loss mediated metabolic reprogramming, and reduced cell viability through pharmacologic inhibition or genetic ablation of m6A writer METTL3 specific to SETD2 deficient cells. Thus, targeting m6A may represent a novel therapeutic vulnerability in <i>SETD2</i> mutant ccRCC.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":"20 1","pages":"2456418"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11776469/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2025.2456418","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA N6-methyladenosine (m6A) plays diverse roles in RNA metabolism and its deregulation contributes to tumor initiation and progression. Clear cell renal cell carcinoma (ccRCC) is characterized by near ubiquitous loss of VHL followed by mutations in epigenetic regulators PBRM1, SETD2, and BAP1. Mutations in SETD2, a histone H3 lysine 36 trimethylase (H3K36me3), are associated with reduced survival, greater metastatic propensity, and metabolic reprogramming. While m6A and H3K36me3 deregulation are separately implicated in renal tumorigenesis, H3K36me3 may participate directly in m6A targeting, but the m6A-H3K36me3 interplay has not been investigated in the context of ccRCC. Using RCC-relevant SETD2 isogenic knockout and rescue cell line models, we demonstrate a dynamic redistribution of m6A in the SETD2 depleted transcriptome, with a subset of transcripts involved in metabolic reprogramming demonstrating SETD2 dependent m6A and expression level changes. Using a panel of six histone modifications we show that m6A redistributes to regions enriched in gained active enhancers upon SETD2 inactivation. Finally, we demonstrate a reversal of transcriptomic programs involved in SETD2 loss mediated metabolic reprogramming, and reduced cell viability through pharmacologic inhibition or genetic ablation of m6A writer METTL3 specific to SETD2 deficient cells. Thus, targeting m6A may represent a novel therapeutic vulnerability in SETD2 mutant ccRCC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Epigenetics
Epigenetics 生物-生化与分子生物学
CiteScore
6.80
自引率
2.70%
发文量
82
审稿时长
3-8 weeks
期刊介绍: Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed. Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to): DNA methylation Nucleosome positioning and modification Gene silencing Imprinting Nuclear reprogramming Chromatin remodeling Non-coding RNA Non-histone chromosomal elements Dosage compensation Nuclear organization Epigenetic therapy and diagnostics Nutrition and environmental epigenetics Cancer epigenetics Neuroepigenetics
期刊最新文献
DNA-based cell typing in menstrual effluent identifies cell type variation by sample collection method: toward noninvasive biomarker development for women's health. Epigenome-wide association study of perceived discrimination in the Multi-Ethnic Study of Atherosclerosis (MESA). Timing of dietary effects on the epigenome and their potential protective effects against toxins. Astrocyte-derived exosomes regulate sperm miR-34c levels to mediate the transgenerational effects of paternal chronic social instability stress. Deciphering the interplay between SETD2 mediated H3K36me3 and RNA N6-methyladenosine in clear cell renal cell carcinoma (ccRCC).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1