{"title":"Mining versatile feruloyl esterases: phylogenetic classification, structural features, and deep learning model.","authors":"Liang Guo, Yuxin Dong, Deyong Zhang, Xinrong Pan, Xinjie Jin, Xinyu Yan, Yin Lu","doi":"10.1186/s40643-024-00835-8","DOIUrl":null,"url":null,"abstract":"<p><p>Feruloyl esterases (FEs, EC 3.1.1.73) play a crucial role in biological synthesis and metabolism. However, the identification of versatile FEs, capable of catalyzing a wide range of substrates, remains a challenge. In this study, we obtained 2085 FE sequences from the BRENDA database and initiated with an enzyme similarity network analysis, revealing three main clusters (1-3). Notably, both cluster 1 and cluster 3 included the characterized FEs, which exhibited significant differences in sequence length. Subsequent phylogenetic analysis of these clusters unveiled a correlation between phylogenetic classification and substrate promiscuity, and enzymes with broad substrate scope tended to locate within specific branches of the phylogenetic tree. Further, molecular dynamics simulations and dynamical cross-correlation matrix analysis were employed to explore structural dynamics differences between promiscuous and substrate-specific FEs. Finally, to expand the repertoire of versatile FEs, we employed deep learning models to predict potentially promiscuous enzymes and identified 38 and 75 potential versatile FEs from cluster 1 and cluster 3 with a probability score exceeding 90%. Our findings underscore the utility of integrating phylogenetic and structural features with deep learning approaches for mining versatile FEs, shedding light on unexplored enzymatic diversity and expanding the repertoire of biocatalysts for synthetic applications.</p>","PeriodicalId":9067,"journal":{"name":"Bioresources and Bioprocessing","volume":"12 1","pages":"7"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780051/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresources and Bioprocessing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40643-024-00835-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Feruloyl esterases (FEs, EC 3.1.1.73) play a crucial role in biological synthesis and metabolism. However, the identification of versatile FEs, capable of catalyzing a wide range of substrates, remains a challenge. In this study, we obtained 2085 FE sequences from the BRENDA database and initiated with an enzyme similarity network analysis, revealing three main clusters (1-3). Notably, both cluster 1 and cluster 3 included the characterized FEs, which exhibited significant differences in sequence length. Subsequent phylogenetic analysis of these clusters unveiled a correlation between phylogenetic classification and substrate promiscuity, and enzymes with broad substrate scope tended to locate within specific branches of the phylogenetic tree. Further, molecular dynamics simulations and dynamical cross-correlation matrix analysis were employed to explore structural dynamics differences between promiscuous and substrate-specific FEs. Finally, to expand the repertoire of versatile FEs, we employed deep learning models to predict potentially promiscuous enzymes and identified 38 and 75 potential versatile FEs from cluster 1 and cluster 3 with a probability score exceeding 90%. Our findings underscore the utility of integrating phylogenetic and structural features with deep learning approaches for mining versatile FEs, shedding light on unexplored enzymatic diversity and expanding the repertoire of biocatalysts for synthetic applications.
期刊介绍:
Bioresources and Bioprocessing (BIOB) is a peer-reviewed open access journal published under the brand SpringerOpen. BIOB aims at providing an international academic platform for exchanging views on and promoting research to support bioresource development, processing and utilization in a sustainable manner. As an application-oriented research journal, BIOB covers not only the application and management of bioresource technology but also the design and development of bioprocesses that will lead to new and sustainable production processes. BIOB publishes original and review articles on most topics relating to bioresource and bioprocess engineering, including: -Biochemical and microbiological engineering -Biocatalysis and biotransformation -Biosynthesis and metabolic engineering -Bioprocess and biosystems engineering -Bioenergy and biorefinery -Cell culture and biomedical engineering -Food, agricultural and marine biotechnology -Bioseparation and biopurification engineering -Bioremediation and environmental biotechnology