Brain inflammation and cognitive decline induced by spinal cord injury can be reversed by spinal cord cell transplants.

IF 8.8 2区 医学 Q1 IMMUNOLOGY Brain, Behavior, and Immunity Pub Date : 2025-01-26 DOI:10.1016/j.bbi.2025.01.014
Quentin Delarue, Amandine Robac, Fannie Semprez, Célia Duclos, Baptiste Pileyre, Pauline Neveu, Clémence Raimond, Gaëtan Riou, Inès Ziane, Nicolas Guérout
{"title":"Brain inflammation and cognitive decline induced by spinal cord injury can be reversed by spinal cord cell transplants.","authors":"Quentin Delarue, Amandine Robac, Fannie Semprez, Célia Duclos, Baptiste Pileyre, Pauline Neveu, Clémence Raimond, Gaëtan Riou, Inès Ziane, Nicolas Guérout","doi":"10.1016/j.bbi.2025.01.014","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injuries (SCIs) impact between 250,000 and 500,000 people worldwide annually, often resulting from road accidents or falls. These injuries frequently lead to lasting disabilities, with the severity depending on the injury's extent and location. Emerging research also links SCIs to cognitive impairments due to brain inflammation. From a treatment perspective, various approaches, including cell therapy, have been investigated. One common mechanism across cellular transplant models is the modulation of inflammation at the injury site, though it remains uncertain if these effects extend to the brain. To explore this, we induced SCI in wild-type mice and treated them with either olfactory ensheathing cells or mesenchymal stem cells. Our findings reveal that both cell types can reverse SCI-induced cognitive deficits, reduce brain inflammation, and increase hippocampal neuronal density. This study is the first, to our knowledge, to demonstrate that cells transplanted into the spinal cord can influence brain inflammation and mitigate injury-induced effects on brain functions. These results highlight the intricate relationship between the spinal cord and brain in both health and disease.</p>","PeriodicalId":9199,"journal":{"name":"Brain, Behavior, and Immunity","volume":" ","pages":""},"PeriodicalIF":8.8000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain, Behavior, and Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bbi.2025.01.014","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spinal cord injuries (SCIs) impact between 250,000 and 500,000 people worldwide annually, often resulting from road accidents or falls. These injuries frequently lead to lasting disabilities, with the severity depending on the injury's extent and location. Emerging research also links SCIs to cognitive impairments due to brain inflammation. From a treatment perspective, various approaches, including cell therapy, have been investigated. One common mechanism across cellular transplant models is the modulation of inflammation at the injury site, though it remains uncertain if these effects extend to the brain. To explore this, we induced SCI in wild-type mice and treated them with either olfactory ensheathing cells or mesenchymal stem cells. Our findings reveal that both cell types can reverse SCI-induced cognitive deficits, reduce brain inflammation, and increase hippocampal neuronal density. This study is the first, to our knowledge, to demonstrate that cells transplanted into the spinal cord can influence brain inflammation and mitigate injury-induced effects on brain functions. These results highlight the intricate relationship between the spinal cord and brain in both health and disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
29.60
自引率
2.00%
发文量
290
审稿时长
28 days
期刊介绍: Established in 1987, Brain, Behavior, and Immunity proudly serves as the official journal of the Psychoneuroimmunology Research Society (PNIRS). This pioneering journal is dedicated to publishing peer-reviewed basic, experimental, and clinical studies that explore the intricate interactions among behavioral, neural, endocrine, and immune systems in both humans and animals. As an international and interdisciplinary platform, Brain, Behavior, and Immunity focuses on original research spanning neuroscience, immunology, integrative physiology, behavioral biology, psychiatry, psychology, and clinical medicine. The journal is inclusive of research conducted at various levels, including molecular, cellular, social, and whole organism perspectives. With a commitment to efficiency, the journal facilitates online submission and review, ensuring timely publication of experimental results. Manuscripts typically undergo peer review and are returned to authors within 30 days of submission. It's worth noting that Brain, Behavior, and Immunity, published eight times a year, does not impose submission fees or page charges, fostering an open and accessible platform for scientific discourse.
期刊最新文献
Editorial Board Ezrin-mediated astrocyte-synapse signaling regulates cognitive function via astrocyte morphological changes in fine processes in male mice Minimally invasive serial collection of cerebrospinal fluid reveals sex-dependent differences in neuroinflammation in a rat model of mild traumatic brain injury Peripartum buprenorphine and oxycodone exposure impair maternal behavior and increase neuroinflammation in new mother rats Sick and detached: Does experimental inflammation impact on movement synchrony in humans?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1