The Impact of Optical Undersampling on the Ca2+ Signal Resolution in Ca2+ Imaging of Spontaneous Neuronal Activity.

IF 2.5 4区 医学 Q3 NEUROSCIENCES Journal of integrative neuroscience Pub Date : 2025-01-21 DOI:10.31083/JIN26242
Katarina D Milicevic, Violetta O Ivanova, Tina N Brazil, Cesar A Varillas, Yan M D Zhu, Pavle R Andjus, Srdjan D Antic
{"title":"The Impact of Optical Undersampling on the Ca<sup>2+</sup> Signal Resolution in Ca<sup>2+</sup> Imaging of Spontaneous Neuronal Activity.","authors":"Katarina D Milicevic, Violetta O Ivanova, Tina N Brazil, Cesar A Varillas, Yan M D Zhu, Pavle R Andjus, Srdjan D Antic","doi":"10.31083/JIN26242","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In neuroscience, Ca<sup>2+</sup> imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.</p><p><strong>Methods: </strong>Primary neuronal cultures were prepared from the cortex of newborn pups. Neurons were loaded with Oregon Green BAPTA-1 AM (OGB1-AM) fluorescent indicator. Spontaneous neuronal activity was recorded at low (14 Hz) and high (500 Hz) sampling rates, and the same neurons (n = 269) were analyzed under both conditions. We compared optical signal amplitude, duration, and frequency.</p><p><strong>Results: </strong>Although recurring Ca<sup>2+</sup> transients appeared visually similar at 14 Hz and 500 Hz, quantitative analysis revealed significantly faster rise times and shorter durations (half-widths) at the higher sampling rate. Small-amplitude Ca<sup>2+</sup> transients, undetectable at 14 Hz, became evident at 500 Hz, particularly in the neuropil (putative dendrites and axons), but not in nearby cell bodies. Large Ca<sup>2+</sup> transients exhibited greater amplitudes and faster temporal dynamics in dendrites compared with somas, potentially due to the higher surface-to-volume ratio of dendrites. In neurons bulk-loaded with OGB1-AM, cell nucleus-mediated signal distortions were observed in every neuron examined (n = 57). Specifically, two regions of interest (ROIs) on different segments of the same cell body displayed significantly different signal amplitudes and durations due to dye accumulation in the nucleus.</p><p><strong>Conclusions: </strong>Our findings reveal that Ca<sup>2+</sup> signal undersampling leads to three types of information loss: (1) distortion of rise times and durations for large-amplitude transients, (2) failure to detect small-amplitude transients in cell bodies, and (3) omission of small-amplitude transients in the neuropil.</p>","PeriodicalId":16160,"journal":{"name":"Journal of integrative neuroscience","volume":"24 1","pages":"26242"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of integrative neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/JIN26242","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In neuroscience, Ca2+ imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups. Neurons were loaded with Oregon Green BAPTA-1 AM (OGB1-AM) fluorescent indicator. Spontaneous neuronal activity was recorded at low (14 Hz) and high (500 Hz) sampling rates, and the same neurons (n = 269) were analyzed under both conditions. We compared optical signal amplitude, duration, and frequency.

Results: Although recurring Ca2+ transients appeared visually similar at 14 Hz and 500 Hz, quantitative analysis revealed significantly faster rise times and shorter durations (half-widths) at the higher sampling rate. Small-amplitude Ca2+ transients, undetectable at 14 Hz, became evident at 500 Hz, particularly in the neuropil (putative dendrites and axons), but not in nearby cell bodies. Large Ca2+ transients exhibited greater amplitudes and faster temporal dynamics in dendrites compared with somas, potentially due to the higher surface-to-volume ratio of dendrites. In neurons bulk-loaded with OGB1-AM, cell nucleus-mediated signal distortions were observed in every neuron examined (n = 57). Specifically, two regions of interest (ROIs) on different segments of the same cell body displayed significantly different signal amplitudes and durations due to dye accumulation in the nucleus.

Conclusions: Our findings reveal that Ca2+ signal undersampling leads to three types of information loss: (1) distortion of rise times and durations for large-amplitude transients, (2) failure to detect small-amplitude transients in cell bodies, and (3) omission of small-amplitude transients in the neuropil.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
173
审稿时长
2 months
期刊介绍: JIN is an international peer-reviewed, open access journal. JIN publishes leading-edge research at the interface of theoretical and experimental neuroscience, focusing across hierarchical levels of brain organization to better understand how diverse functions are integrated. We encourage submissions from scientists of all specialties that relate to brain functioning.
期刊最新文献
Telomere Length and Oxidative Damage in Children and Adolescents with Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. The Robustness of White Matter Brain Networks Decreases with Aging. Effects of Dual-Site Anodal Transcranial Direct Current Stimulation on Attention, Decision-Making, and Working Memory during Sports Fatigue in Elite Soccer Athletes. Changes in the Parietal Lobe Subregion Volume at Various Stages of Alzheimer's Disease and the Role in Cognitively Normal and Mild Cognitive Impairment Conversion. Exploring the Pathophysiology, Diagnosis, and Treatment Options of Multiple Sclerosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1