Plinabulin exerts an anti-proliferative effect via the PI3K/AKT/mTOR signaling pathways in glioblastoma.

IF 2.1 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Iranian Journal of Basic Medical Sciences Pub Date : 2025-01-01 DOI:10.22038/ijbms.2024.79406.17200
Rouxin Wang, Jing Cheng, Huanqi Zhang, Kaizhi Luo, Rui Wu, Yangling Li, Yuanheng Zhu, Chong Zhang
{"title":"Plinabulin exerts an anti-proliferative effect via the PI3K/AKT/mTOR signaling pathways in glioblastoma.","authors":"Rouxin Wang, Jing Cheng, Huanqi Zhang, Kaizhi Luo, Rui Wu, Yangling Li, Yuanheng Zhu, Chong Zhang","doi":"10.22038/ijbms.2024.79406.17200","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.</p><p><strong>Materials and methods: </strong>Using the SRB and colony formation assay to observe the effect of plinabulin on glioblastoma cell viability. Wound healing and transwell migration assay were used to test the effect of plinabulin on glioblastoma cell metastatic potential. Crucial target genes were identified through RNA sequencing and bioinformatics analysis. Protein levels were evaluated in a concentration-dependent manner using western blot analysis.</p><p><strong>Results: </strong>Plinabulin suppressed glioblastoma cell proliferation by causing cell cycle G2/M phase arrest and inhibited migration. The IC50 values were 22.20 nM in A172 cells and 20.55 nM in T98G cells. Plinabulin reduced AKT and mTOR phosphorylation. Combined with the AKT/mTOR inhibitors LY294002 and rapamycin, plinabulin decreased p-mTOR and EGFR protein levels and increased cleaved-PARP levels. Plinabulin induces autophagy, and using an autophagy inhibitor enhances plinabulin-induced cell apoptosis. This suggests that plinabulin might trigger cytoprotective autophagy in glioblastoma cells. These findings indicate that plinabulin hinders glioblastoma growth and induces protective autophagy via the PI3K/AKT/mTOR pathway. Additionally, plinabulin combined with erlotinib showed greater cytotoxic efficacy than either drug alone in glioblastoma cells <i>in vitro</i>.</p><p><strong>Conclusion: </strong>Our study provides new insights into the efficacy of plinabulin against glioblastoma and highlights the potential clinical utility of combining plinabulin with EGFR inhibitors as a chemotherapy strategy.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"28 1","pages":"113-120"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771332/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/ijbms.2024.79406.17200","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.

Materials and methods: Using the SRB and colony formation assay to observe the effect of plinabulin on glioblastoma cell viability. Wound healing and transwell migration assay were used to test the effect of plinabulin on glioblastoma cell metastatic potential. Crucial target genes were identified through RNA sequencing and bioinformatics analysis. Protein levels were evaluated in a concentration-dependent manner using western blot analysis.

Results: Plinabulin suppressed glioblastoma cell proliferation by causing cell cycle G2/M phase arrest and inhibited migration. The IC50 values were 22.20 nM in A172 cells and 20.55 nM in T98G cells. Plinabulin reduced AKT and mTOR phosphorylation. Combined with the AKT/mTOR inhibitors LY294002 and rapamycin, plinabulin decreased p-mTOR and EGFR protein levels and increased cleaved-PARP levels. Plinabulin induces autophagy, and using an autophagy inhibitor enhances plinabulin-induced cell apoptosis. This suggests that plinabulin might trigger cytoprotective autophagy in glioblastoma cells. These findings indicate that plinabulin hinders glioblastoma growth and induces protective autophagy via the PI3K/AKT/mTOR pathway. Additionally, plinabulin combined with erlotinib showed greater cytotoxic efficacy than either drug alone in glioblastoma cells in vitro.

Conclusion: Our study provides new insights into the efficacy of plinabulin against glioblastoma and highlights the potential clinical utility of combining plinabulin with EGFR inhibitors as a chemotherapy strategy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Iranian Journal of Basic Medical Sciences
Iranian Journal of Basic Medical Sciences MEDICINE, RESEARCH & EXPERIMENTAL-PHARMACOLOGY & PHARMACY
CiteScore
4.00
自引率
4.50%
发文量
142
审稿时长
6-12 weeks
期刊介绍: The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.
期刊最新文献
Pim3 up-regulation by YY1 contributes to diabetes-induced cardiac hypertrophy and heart failure. Potential therapeutic effects of shrimp protein hydrolysates on NAFLD-induced infertility disorders: Insights into redox balance, heat shock protein expression, and chromatin compaction in male rats. Puerarin alleviates renal ischemia/reperfusion injury by inhibiting apoptosis and endoplasmic reticulum stress via Nrf2/HO-1 pathway. Protective effect of Lavandula angustifolia essential oil inhalation on neuromodulators regulating the sleep/wake cycle in rats with total sleep deprivation. Regeneration of the skin wound by two different crosslinkers: In vitro and in vivo studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1