{"title":"Plinabulin exerts an anti-proliferative effect via the PI3K/AKT/mTOR signaling pathways in glioblastoma.","authors":"Rouxin Wang, Jing Cheng, Huanqi Zhang, Kaizhi Luo, Rui Wu, Yangling Li, Yuanheng Zhu, Chong Zhang","doi":"10.22038/ijbms.2024.79406.17200","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.</p><p><strong>Materials and methods: </strong>Using the SRB and colony formation assay to observe the effect of plinabulin on glioblastoma cell viability. Wound healing and transwell migration assay were used to test the effect of plinabulin on glioblastoma cell metastatic potential. Crucial target genes were identified through RNA sequencing and bioinformatics analysis. Protein levels were evaluated in a concentration-dependent manner using western blot analysis.</p><p><strong>Results: </strong>Plinabulin suppressed glioblastoma cell proliferation by causing cell cycle G2/M phase arrest and inhibited migration. The IC50 values were 22.20 nM in A172 cells and 20.55 nM in T98G cells. Plinabulin reduced AKT and mTOR phosphorylation. Combined with the AKT/mTOR inhibitors LY294002 and rapamycin, plinabulin decreased p-mTOR and EGFR protein levels and increased cleaved-PARP levels. Plinabulin induces autophagy, and using an autophagy inhibitor enhances plinabulin-induced cell apoptosis. This suggests that plinabulin might trigger cytoprotective autophagy in glioblastoma cells. These findings indicate that plinabulin hinders glioblastoma growth and induces protective autophagy via the PI3K/AKT/mTOR pathway. Additionally, plinabulin combined with erlotinib showed greater cytotoxic efficacy than either drug alone in glioblastoma cells <i>in vitro</i>.</p><p><strong>Conclusion: </strong>Our study provides new insights into the efficacy of plinabulin against glioblastoma and highlights the potential clinical utility of combining plinabulin with EGFR inhibitors as a chemotherapy strategy.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":"28 1","pages":"113-120"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11771332/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/ijbms.2024.79406.17200","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: Plinabulin, a marine-derived anticancer drug targeting microtubules, exhibits anti-cancer effects on glioblastoma cells. However, its therapeutic potential, specifically for glioblastoma treatment, remains underexplored. This study aims to elucidate the mechanisms by which plinabulin exerts its effects on glioblastoma cells.
Materials and methods: Using the SRB and colony formation assay to observe the effect of plinabulin on glioblastoma cell viability. Wound healing and transwell migration assay were used to test the effect of plinabulin on glioblastoma cell metastatic potential. Crucial target genes were identified through RNA sequencing and bioinformatics analysis. Protein levels were evaluated in a concentration-dependent manner using western blot analysis.
Results: Plinabulin suppressed glioblastoma cell proliferation by causing cell cycle G2/M phase arrest and inhibited migration. The IC50 values were 22.20 nM in A172 cells and 20.55 nM in T98G cells. Plinabulin reduced AKT and mTOR phosphorylation. Combined with the AKT/mTOR inhibitors LY294002 and rapamycin, plinabulin decreased p-mTOR and EGFR protein levels and increased cleaved-PARP levels. Plinabulin induces autophagy, and using an autophagy inhibitor enhances plinabulin-induced cell apoptosis. This suggests that plinabulin might trigger cytoprotective autophagy in glioblastoma cells. These findings indicate that plinabulin hinders glioblastoma growth and induces protective autophagy via the PI3K/AKT/mTOR pathway. Additionally, plinabulin combined with erlotinib showed greater cytotoxic efficacy than either drug alone in glioblastoma cells in vitro.
Conclusion: Our study provides new insights into the efficacy of plinabulin against glioblastoma and highlights the potential clinical utility of combining plinabulin with EGFR inhibitors as a chemotherapy strategy.
期刊介绍:
The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.