Wenying Wu , Zhongjing Su , Congying Luo , Jiejie Li , Xinle Yu , Han Xie , Ganglong Wu , Dinghui Wang , Kusheng Wu
{"title":"Bisphenol F (BPF) exposure impairs sperm quality and offspring development in male zebrafish","authors":"Wenying Wu , Zhongjing Su , Congying Luo , Jiejie Li , Xinle Yu , Han Xie , Ganglong Wu , Dinghui Wang , Kusheng Wu","doi":"10.1016/j.taap.2025.117245","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Bisphenol F (BPF), a substitute for bisphenol A (BPA), is widely used in consumer products, increasing the potential for environmental exposure. Our study investigated the reproductive effects of BPF on adult male zebrafish and explored its toxicological mechanisms, as well as its intergenerational effects.</div></div><div><h3>Methods</h3><div>Adult male zebrafish were exposed to BPF concentrations of 0, 50, 500, 2500, and 5000 nM for 21 days. We evaluated sperm cell quantity and quality, hormonal markers testosterone (T) and vitellogenin (VTG), gene expression profiles related to hormone synthesis, metabolism, apoptosis, cell cycle, sexual behavior, and offspring health metrics including survival, development and locomotion.</div></div><div><h3>Results</h3><div>BPF exposure did not significantly affect body weight or gonadal index. However, at 500 and 2500 nM, a significant reduction in sperm count was observed. BPF exposure led to decreased serum T and increased hepatic VTG levels, indicating hormonal disruption. At 50 nM, BPF initiated sperm apoptosis, and at higher doses, it disrupted sperm meiosis, affecting cell distribution. This exposure negatively impacted sperm quality, reduced offspring survival rates, and altered sperm motility in adult fish. Offspring from BPF-exposed groups showed developmental issues, including increased mortality, delayed developmental stages, abnormal tail coiling and heart rate, which correlated with paternal sperm count and quality changes, alterations in T and VTG levels, and cell cycle phase distributions.</div></div><div><h3>Conclusions</h3><div>Our study demonstrated that BPF exposure significantly impacted sperm quality, characterized by reduced sperm count and altered motility patterns, leading to developmental anomalies in offspring. These novel findings highlight the need for further research into BPF's reproductive and developmental toxicity, emphasizing the potential risks to aquatic ecosystems and human health. The observed effects on sperm quality, hormonal balance, and offspring development provide new insights into the reproductive toxicity profile of BPF.</div></div>","PeriodicalId":23174,"journal":{"name":"Toxicology and applied pharmacology","volume":"496 ","pages":"Article 117245"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology and applied pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041008X25000213","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Bisphenol F (BPF), a substitute for bisphenol A (BPA), is widely used in consumer products, increasing the potential for environmental exposure. Our study investigated the reproductive effects of BPF on adult male zebrafish and explored its toxicological mechanisms, as well as its intergenerational effects.
Methods
Adult male zebrafish were exposed to BPF concentrations of 0, 50, 500, 2500, and 5000 nM for 21 days. We evaluated sperm cell quantity and quality, hormonal markers testosterone (T) and vitellogenin (VTG), gene expression profiles related to hormone synthesis, metabolism, apoptosis, cell cycle, sexual behavior, and offspring health metrics including survival, development and locomotion.
Results
BPF exposure did not significantly affect body weight or gonadal index. However, at 500 and 2500 nM, a significant reduction in sperm count was observed. BPF exposure led to decreased serum T and increased hepatic VTG levels, indicating hormonal disruption. At 50 nM, BPF initiated sperm apoptosis, and at higher doses, it disrupted sperm meiosis, affecting cell distribution. This exposure negatively impacted sperm quality, reduced offspring survival rates, and altered sperm motility in adult fish. Offspring from BPF-exposed groups showed developmental issues, including increased mortality, delayed developmental stages, abnormal tail coiling and heart rate, which correlated with paternal sperm count and quality changes, alterations in T and VTG levels, and cell cycle phase distributions.
Conclusions
Our study demonstrated that BPF exposure significantly impacted sperm quality, characterized by reduced sperm count and altered motility patterns, leading to developmental anomalies in offspring. These novel findings highlight the need for further research into BPF's reproductive and developmental toxicity, emphasizing the potential risks to aquatic ecosystems and human health. The observed effects on sperm quality, hormonal balance, and offspring development provide new insights into the reproductive toxicity profile of BPF.
期刊介绍:
Toxicology and Applied Pharmacology publishes original scientific research of relevance to animals or humans pertaining to the action of chemicals, drugs, or chemically-defined natural products.
Regular articles address mechanistic approaches to physiological, pharmacologic, biochemical, cellular, or molecular understanding of toxicologic/pathologic lesions and to methods used to describe these responses. Safety Science articles address outstanding state-of-the-art preclinical and human translational characterization of drug and chemical safety employing cutting-edge science. Highly significant Regulatory Safety Science articles will also be considered in this category. Papers concerned with alternatives to the use of experimental animals are encouraged.
Short articles report on high impact studies of broad interest to readers of TAAP that would benefit from rapid publication. These articles should contain no more than a combined total of four figures and tables. Authors should include in their cover letter the justification for consideration of their manuscript as a short article.