Szymon Juszkiewicz, Sew-Yeu Peak-Chew, Ramanujan S Hegde
{"title":"Mechanism of chaperone recruitment and retention on mitochondrial precursors.","authors":"Szymon Juszkiewicz, Sew-Yeu Peak-Chew, Ramanujan S Hegde","doi":"10.1091/mbc.E25-01-0035","DOIUrl":null,"url":null,"abstract":"<p><p>Nearly all mitochondrial proteins are imported into mitochondria from the cytosol. How nascent mitochondrial precursors acquire and sustain import competence in the cytosol under normal and stress conditions is incompletely understood. Here, we show that under normal conditions, the Hsc70 and Hsp90 systems interact with and redundantly minimize precursor degradation. During acute import stress, Hsp90 buffers precursor degradation, preserving proteins in an import-competent state until stress resolution. Unexpectedly, buffering by Hsp90 relies critically on a mitochondrial targeting signal (MTS), the absence of which greatly decreases precursor-Hsp90 interaction. Site-specific photo-cross-linking and biochemical reconstitution showed how the MTS directly engages co-chaperones of Hsc70 (St13 and Stip1) and Hsp90 (p23 and Cdc37) to facilitate chaperone retention on the mature domain. Thus, the MTS has a previously unappreciated role in regulating chaperone dynamics on mitochondrial precursors to buffer their degradation and maintain import competence, functions that may facilitate restoration of mitochondrial homeostasis after acute import stress.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar39"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E25-01-0035","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nearly all mitochondrial proteins are imported into mitochondria from the cytosol. How nascent mitochondrial precursors acquire and sustain import competence in the cytosol under normal and stress conditions is incompletely understood. Here, we show that under normal conditions, the Hsc70 and Hsp90 systems interact with and redundantly minimize precursor degradation. During acute import stress, Hsp90 buffers precursor degradation, preserving proteins in an import-competent state until stress resolution. Unexpectedly, buffering by Hsp90 relies critically on a mitochondrial targeting signal (MTS), the absence of which greatly decreases precursor-Hsp90 interaction. Site-specific photo-cross-linking and biochemical reconstitution showed how the MTS directly engages co-chaperones of Hsc70 (St13 and Stip1) and Hsp90 (p23 and Cdc37) to facilitate chaperone retention on the mature domain. Thus, the MTS has a previously unappreciated role in regulating chaperone dynamics on mitochondrial precursors to buffer their degradation and maintain import competence, functions that may facilitate restoration of mitochondrial homeostasis after acute import stress.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.