Coprinolide, a novel antifungal tricyclic polyketide with a rare furanone-fused chromene skeleton isolated from the mushroom Coprinus comatus.

IF 1.5 4区 农林科学 Q2 ENTOMOLOGY Journal of Pesticide Science Pub Date : 2024-11-20 DOI:10.1584/jpestics.D24-040
Enrico M Cabutaje, Kota Seki, Motoichiro Kodama, Tsutomu Arie, Kotomi Ueno, Thomas Edison E Dela Cruz, Atsushi Ishihara
{"title":"Coprinolide, a novel antifungal tricyclic polyketide with a rare furanone-fused chromene skeleton isolated from the mushroom <i>Coprinus comatus</i>.","authors":"Enrico M Cabutaje, Kota Seki, Motoichiro Kodama, Tsutomu Arie, Kotomi Ueno, Thomas Edison E Dela Cruz, Atsushi Ishihara","doi":"10.1584/jpestics.D24-040","DOIUrl":null,"url":null,"abstract":"<p><p>A search for antifungal compounds from the mushroom <i>Coprinus comatus</i> using a bioassay-guided chromatographic fractionation approach led to the discovery of a novel polyketide harboring a rare 3,3a,9,9a-tetrahydro-1<i>H</i>-furo[3,4-<i>b</i>]chromen-1-one skeleton. The novel compound was named coprinolide. The inhibitory activity and fungicidal potential of coprinolide were evaluated against five economically important plant-pathogenic fungi. Coprinolide showed inhibitory effects on conidial germination and germ tube elongation of all tested fungi. The strongest effect was observed for <i>Colletotrichum orbiculare</i> with half-maximal inhibitory concentrations of 7.1 ppm and 8.2 ppm for conidial germination and germ tube elongation, respectively. Furthermore, coprinolide exhibited fungicidal activity against the tested fungi by inhibiting conidial germination to conidial death as confirmed by fluorescence microscopy using fluorescein diacetate and propidium iodide. These findings showed the potential of the mushroom as a source of a novel bioactive compound with promising agricultural application as an antifungal agent against different plant-pathogenic fungi.</p>","PeriodicalId":16712,"journal":{"name":"Journal of Pesticide Science","volume":"49 4","pages":"243-254"},"PeriodicalIF":1.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pesticide Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1584/jpestics.D24-040","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A search for antifungal compounds from the mushroom Coprinus comatus using a bioassay-guided chromatographic fractionation approach led to the discovery of a novel polyketide harboring a rare 3,3a,9,9a-tetrahydro-1H-furo[3,4-b]chromen-1-one skeleton. The novel compound was named coprinolide. The inhibitory activity and fungicidal potential of coprinolide were evaluated against five economically important plant-pathogenic fungi. Coprinolide showed inhibitory effects on conidial germination and germ tube elongation of all tested fungi. The strongest effect was observed for Colletotrichum orbiculare with half-maximal inhibitory concentrations of 7.1 ppm and 8.2 ppm for conidial germination and germ tube elongation, respectively. Furthermore, coprinolide exhibited fungicidal activity against the tested fungi by inhibiting conidial germination to conidial death as confirmed by fluorescence microscopy using fluorescein diacetate and propidium iodide. These findings showed the potential of the mushroom as a source of a novel bioactive compound with promising agricultural application as an antifungal agent against different plant-pathogenic fungi.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Pesticide Science
Journal of Pesticide Science 农林科学-昆虫学
CiteScore
4.30
自引率
4.20%
发文量
28
审稿时长
18-36 weeks
期刊介绍: The Journal of Pesticide Science publishes the results of original research regarding the chemistry and biochemistry of pesticides including bio-based materials. It also covers their metabolism, toxicology, environmental fate and formulation.
期刊最新文献
A new pod bioassay method to determine the toxicity of insecticides against Tea mosquito bug, Helopeltis theivora. A suitable solvent for adsorption of poorly water-soluble substances onto silica gel in a ready biodegradability test. Discovery of anti-phytopathogenic fungal activity of a new type of (S)-coumarin bearing a phenylpropanoid unit at the 3-position. Flometoquin, a novel insecticide, acts on mitochondrial complex III as a Qi inhibitor. Barley is a potential trap crop for root parasitic broomrape weeds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1