Perturbation of Pseudomonas aeruginosa peptidoglycan recycling by anti-folates and design of a dual-action inhibitor.

IF 5.1 1区 生物学 Q1 MICROBIOLOGY mBio Pub Date : 2025-01-29 DOI:10.1128/mbio.02984-24
Luke N Yaeger, David Sychantha, Princeton Luong, Shahrokh Shekarriz, Océane Goncalves, Annamaria Dobrin, Michael R Ranieri, Ryan P Lamers, Hanjeong Harvey, George C diCenzo, Michael Surette, Jean-Phiippe Côté, Jakob Magolan, Lori L Burrows
{"title":"Perturbation of <i>Pseudomonas aeruginosa</i> peptidoglycan recycling by anti-folates and design of a dual-action inhibitor.","authors":"Luke N Yaeger, David Sychantha, Princeton Luong, Shahrokh Shekarriz, Océane Goncalves, Annamaria Dobrin, Michael R Ranieri, Ryan P Lamers, Hanjeong Harvey, George C diCenzo, Michael Surette, Jean-Phiippe Côté, Jakob Magolan, Lori L Burrows","doi":"10.1128/mbio.02984-24","DOIUrl":null,"url":null,"abstract":"<p><p>Peptidoglycan (PG) is an important bacterial macromolecule that confers cell shape and structural integrity, and is a key antibiotic target. Its synthesis and turnover are carefully coordinated with other cellular processes and pathways. Despite established connections between the biosynthesis of PG and the outer membrane, or PG and DNA replication, links between PG and folate metabolism remain comparatively unexplored. Folate is an essential cofactor for bacterial growth and is required for the synthesis of many important metabolites. Here we show that inhibition of folate synthesis in the important Gram-negative pathogen <i>Pseudomonas aeruginosa</i> has downstream effects on PG metabolism and integrity that can manifest as the formation of a subpopulation of round cells that can undergo explosive lysis. Folate inhibitors potentiated β-lactams by perturbation of PG recycling, reducing expression of the AmpC β-lactamase. Supporting this mechanism, folate inhibitors also synergized with fosfomycin, an inhibitor of MurA, the first committed step in PG synthesis that can be bypassed by PG recycling. These insights led to the design of a dual-active inhibitor that overcomes NDM-1 metallo-β lactamase-mediated meropenem resistance and synergizes with the folate inhibitor, trimethoprim. We show that folate and PG metabolism are intimately connected, and targeting this connection can overcome antibiotic resistance in Gram-negative pathogens.</p><p><strong>Importance: </strong>To combat the alarming global increase in superbugs amid the simultaneous scarcity of new drugs, we can create synergistic combinations of currently available antibiotics or chimeric molecules with dual activities, to minimize resistance. Here we show that older anti-folate drugs synergize with specific cell wall biosynthesis inhibitors to kill the priority pathogen, <i>Pseudomonas aeruginosa</i>. Anti-folate drugs caused a dose-dependent loss of rod cell shape followed by explosive lysis, and synergized with β-lactams that target D,D-carboxypeptidases required to tailor the cell wall. Anti-folates impaired cell wall recycling and subsequent downstream expression of the chromosomally encoded β-lactamase, AmpC, which normally destroys β-lactam antibiotics. Building on the anti-folate-like scaffold of a metallo-β-lactamase inhibitor, we created a new molecule, MLLB-2201, that potentiates β-lactams and anti-folates and restores meropenem activity against metallo-β-lactamase-expressing <i>Escherichia coli</i>. These strategies are useful ways to tackle the ongoing rise in dangerous bacterial pathogens.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0298424"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.02984-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Peptidoglycan (PG) is an important bacterial macromolecule that confers cell shape and structural integrity, and is a key antibiotic target. Its synthesis and turnover are carefully coordinated with other cellular processes and pathways. Despite established connections between the biosynthesis of PG and the outer membrane, or PG and DNA replication, links between PG and folate metabolism remain comparatively unexplored. Folate is an essential cofactor for bacterial growth and is required for the synthesis of many important metabolites. Here we show that inhibition of folate synthesis in the important Gram-negative pathogen Pseudomonas aeruginosa has downstream effects on PG metabolism and integrity that can manifest as the formation of a subpopulation of round cells that can undergo explosive lysis. Folate inhibitors potentiated β-lactams by perturbation of PG recycling, reducing expression of the AmpC β-lactamase. Supporting this mechanism, folate inhibitors also synergized with fosfomycin, an inhibitor of MurA, the first committed step in PG synthesis that can be bypassed by PG recycling. These insights led to the design of a dual-active inhibitor that overcomes NDM-1 metallo-β lactamase-mediated meropenem resistance and synergizes with the folate inhibitor, trimethoprim. We show that folate and PG metabolism are intimately connected, and targeting this connection can overcome antibiotic resistance in Gram-negative pathogens.

Importance: To combat the alarming global increase in superbugs amid the simultaneous scarcity of new drugs, we can create synergistic combinations of currently available antibiotics or chimeric molecules with dual activities, to minimize resistance. Here we show that older anti-folate drugs synergize with specific cell wall biosynthesis inhibitors to kill the priority pathogen, Pseudomonas aeruginosa. Anti-folate drugs caused a dose-dependent loss of rod cell shape followed by explosive lysis, and synergized with β-lactams that target D,D-carboxypeptidases required to tailor the cell wall. Anti-folates impaired cell wall recycling and subsequent downstream expression of the chromosomally encoded β-lactamase, AmpC, which normally destroys β-lactam antibiotics. Building on the anti-folate-like scaffold of a metallo-β-lactamase inhibitor, we created a new molecule, MLLB-2201, that potentiates β-lactams and anti-folates and restores meropenem activity against metallo-β-lactamase-expressing Escherichia coli. These strategies are useful ways to tackle the ongoing rise in dangerous bacterial pathogens.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
期刊最新文献
Exploring the interaction between endornavirus and Sclerotinia sclerotiorum: mechanisms of phytopathogenic fungal virulence and antivirus. HSP90 interacts with VP37 to facilitate the cell-to-cell movement of broad bean wilt virus 2. Large diversity in the O-chain biosynthetic cluster within populations of Pelagibacterales. Microbiota does not influence tumor development in two models of heritable cancer. Gene regulatory network resource aids in predicting trans-acting regulators of biosynthetic gene clusters in Aspergillus fumigatus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1