Michela Corsini, Hunter J Cole, Dylan G E Gomes, Kurt M Fristrup, Jesse R Barber
{"title":"Blended-red lighting partially mitigates the cost of light pollution for arthropods.","authors":"Michela Corsini, Hunter J Cole, Dylan G E Gomes, Kurt M Fristrup, Jesse R Barber","doi":"10.1007/s00442-025-05665-9","DOIUrl":null,"url":null,"abstract":"<p><p>Light pollution disrupts the natural dark-light rhythmicity of the world and alters the spectral composition of the nocturnal sky, with far-reaching impacts on natural systems. While the costs of light pollution are now documented across scales and taxa, community-level mitigations for arthropods remain unclear. To test two light pollution mitigation strategies, we replaced all 32 streetlights in the largest visitor center in Grand Teton National Park (Wyoming, USA) to allow wireless control over each luminaries' color and brightness. We captured fewer arthropods, across most Orders, in the blended-red light compared to white (3000 K). Interestingly, we found an effect of light brightness and color, suggesting that, overall, more arthropods were attracted by brighter, and white color hues compared to blended-red. Our findings provide valuable insights into the mitigation of artificial light at night, likely one of the primary drivers of global arthropod declines.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"207 1","pages":"26"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779773/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-025-05665-9","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Light pollution disrupts the natural dark-light rhythmicity of the world and alters the spectral composition of the nocturnal sky, with far-reaching impacts on natural systems. While the costs of light pollution are now documented across scales and taxa, community-level mitigations for arthropods remain unclear. To test two light pollution mitigation strategies, we replaced all 32 streetlights in the largest visitor center in Grand Teton National Park (Wyoming, USA) to allow wireless control over each luminaries' color and brightness. We captured fewer arthropods, across most Orders, in the blended-red light compared to white (3000 K). Interestingly, we found an effect of light brightness and color, suggesting that, overall, more arthropods were attracted by brighter, and white color hues compared to blended-red. Our findings provide valuable insights into the mitigation of artificial light at night, likely one of the primary drivers of global arthropod declines.
期刊介绍:
Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas:
Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology,
Behavioral ecology and Physiological Ecology.
In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.