Leah K Gauthier, Adam Foster, Brian D Wagner, Christopher W Kirby
{"title":"Isolation of Soil Microorganisms Using iChip Technology.","authors":"Leah K Gauthier, Adam Foster, Brian D Wagner, Christopher W Kirby","doi":"10.3791/67426","DOIUrl":null,"url":null,"abstract":"<p><p>The iChip isolation technique uses an in-situ isolation device that increases the cultivability of previously unculturable microorganisms. Microorganisms are an important source of novel chemistries and potentially bioactive molecules. However, only 1% of environmental microorganisms can be cultured using conventional laboratory methods. With the rise in antimicrobial resistance, finding new drugs to combat infections and diseases is of foremost importance, and a critical method to finding new molecules is the discovery of new microorganisms. By incubating colonies of soil microorganisms in the wells of a 96-well plate, sealed with a semipermeable membrane and incubated on top of soil, the microbes are in contact with water and growth factors from the soil, allowing for the isolation of novel microbes in a laboratory setting. After a period of domestication in an iChip, microorganisms can potentially be subcultured onto conventional media and used for further study. This device is valuable to bioactive molecule discovery and soil microbiome research and has been used previously in both applications.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 215","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67426","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The iChip isolation technique uses an in-situ isolation device that increases the cultivability of previously unculturable microorganisms. Microorganisms are an important source of novel chemistries and potentially bioactive molecules. However, only 1% of environmental microorganisms can be cultured using conventional laboratory methods. With the rise in antimicrobial resistance, finding new drugs to combat infections and diseases is of foremost importance, and a critical method to finding new molecules is the discovery of new microorganisms. By incubating colonies of soil microorganisms in the wells of a 96-well plate, sealed with a semipermeable membrane and incubated on top of soil, the microbes are in contact with water and growth factors from the soil, allowing for the isolation of novel microbes in a laboratory setting. After a period of domestication in an iChip, microorganisms can potentially be subcultured onto conventional media and used for further study. This device is valuable to bioactive molecule discovery and soil microbiome research and has been used previously in both applications.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.