Impact of Fabrication Techniques and Polishing Procedures on Surface Roughness of Denture Base Resins.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES Jove-Journal of Visualized Experiments Pub Date : 2025-01-17 DOI:10.3791/67844
Yunus Emre Ozden, Pinar Yilmaz Atali, Zeynep Ozkurt Kayahan
{"title":"Impact of Fabrication Techniques and Polishing Procedures on Surface Roughness of Denture Base Resins.","authors":"Yunus Emre Ozden, Pinar Yilmaz Atali, Zeynep Ozkurt Kayahan","doi":"10.3791/67844","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to assess the impact of various fabrication techniques and polishing procedures on the surface roughness (Ra) of resin-based materials used in the fabrication of complete dentures. A total of 90 specimens were produced from three different resin materials: heat-polymerized polymethyl methacrylate (PMMA) resin, CAD-CAM milled PMMA resin, and 3D-printed resin (n = 30). Each specimen measured 10 mm in diameter and 2 mm in height. The surface roughness (Ra) values of the specimens were initially determined using a contact profilometer following fabrication. Subsequently, each group of specimens was polished with 600-, 800-, and 1000-grit silicon carbide abrasive papers under running water. A second measurement of the surface roughness (Ra) values was then performed. The data were analyzed statistically using the Kruskal-Wallis test, Mann-Whitney U test, Wilcoxon signed-rank test, and paired samples t-test (p = 0.05). A statistically significant difference was identified between the groups in terms of surface roughness (Ra) prior to the polishing process (p < 0.001). However, no statistically significant difference was observed between the milled and heat-polymerized PMMA base materials following the polishing process. The 3D-printed specimens showed the most notable improvement in surface roughness due to the polishing process. Nevertheless, their surface roughness remained statistically significantly higher compared to the other samples, both before and after polishing (p < 0.001). The fabrication method of complete denture base materials was observed to influence surface roughness. The surface roughness values of the base materials fabricated using the 3D printing method were higher compared to those fabricated with milled and heat-polymerized PMMA resin, both before and after polishing.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 215","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67844","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to assess the impact of various fabrication techniques and polishing procedures on the surface roughness (Ra) of resin-based materials used in the fabrication of complete dentures. A total of 90 specimens were produced from three different resin materials: heat-polymerized polymethyl methacrylate (PMMA) resin, CAD-CAM milled PMMA resin, and 3D-printed resin (n = 30). Each specimen measured 10 mm in diameter and 2 mm in height. The surface roughness (Ra) values of the specimens were initially determined using a contact profilometer following fabrication. Subsequently, each group of specimens was polished with 600-, 800-, and 1000-grit silicon carbide abrasive papers under running water. A second measurement of the surface roughness (Ra) values was then performed. The data were analyzed statistically using the Kruskal-Wallis test, Mann-Whitney U test, Wilcoxon signed-rank test, and paired samples t-test (p = 0.05). A statistically significant difference was identified between the groups in terms of surface roughness (Ra) prior to the polishing process (p < 0.001). However, no statistically significant difference was observed between the milled and heat-polymerized PMMA base materials following the polishing process. The 3D-printed specimens showed the most notable improvement in surface roughness due to the polishing process. Nevertheless, their surface roughness remained statistically significantly higher compared to the other samples, both before and after polishing (p < 0.001). The fabrication method of complete denture base materials was observed to influence surface roughness. The surface roughness values of the base materials fabricated using the 3D printing method were higher compared to those fabricated with milled and heat-polymerized PMMA resin, both before and after polishing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
期刊最新文献
Experimental Infection of Mice with the Parasitic Nematode Strongyloides ratti. Flow Cytometry-Based Isolation and Therapeutic Evaluation of Tumor-Infiltrating Lymphocytes in a Mouse Model of Pancreatic Cancer. Functional Near-Infrared Spectroscopy Hyperscanning Study in Psychological Counseling. Impact of Fabrication Techniques and Polishing Procedures on Surface Roughness of Denture Base Resins. Imaging and Quantifying Mitochondrial Morphology in C. elegans During Aging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1