Two new enzymes that liberate undecaprenyl-phosphate to replenish the carrier lipid pool during envelope stress.

IF 5.1 1区 生物学 Q1 MICROBIOLOGY mBio Pub Date : 2025-01-29 DOI:10.1128/mbio.03710-24
Ian J Roney, David Z Rudner
{"title":"Two new enzymes that liberate undecaprenyl-phosphate to replenish the carrier lipid pool during envelope stress.","authors":"Ian J Roney, David Z Rudner","doi":"10.1128/mbio.03710-24","DOIUrl":null,"url":null,"abstract":"<p><p>The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated. We recently reported that in the bacterium <i>Bacillus subtilis</i>, the stress-response sigma factor SigM and its cognate anti-sigma factor complex respond to changes in the free UndP pool. When levels are low, SigM activates genes that increase flux through the essential cell wall synthesis pathway, promote the recycling of the lipid carrier, and liberate the carrier from other polymer pathways. Here, we report that two additional enzymes under SigM control help maintain the free pool of UndP. One, UshA (YqjL), resembles alpha-beta hydrolases and liberates UndP from undecaprenyl-monophosphate-linked sugars. The other, UpsH (YpbG), resembles metallophosphoesterases and releases UndP from undecaprenyl-diphosphate-linked wall teichoic acids polymers but not lipid-linked peptidoglycan precursors. UshA becomes critical for growth when UndP-linked sugars are sequestered, and the carrier lipid pool is depleted. Similarly, UpsH becomes essential for viability when UndPP-linked intermediates accumulate. Mutations in the predicted catalytic residues of both putative hydrolases abrogate their function arguing that they act directly to release UndP. These findings define two new enzymes that liberate the carrier lipid from UndP- and UndPP-linked intermediates and bolster the model that the SigM stress-response pathway maintains the UndP pool and prioritizes its use for peptidoglycan synthesis.IMPORTANCEMotivated by the success of naturally occurring glycopeptide antibiotics like vancomycin, one arm of recent antibiotic discovery efforts has focused on compounds that bind lipid-linked precursors used to build extracytoplasmic polymers. Trapping these precursors depletes the universal carrier lipid undecaprenyl-phosphate, which is required for the synthesis of virtually all surface polymers, including peptidoglycan. Understanding how cells respond to this stress to restore the carrier lipid pool is critical to identifying effective drugs. Here, we report the identification of two new enzymes that are produced in response to the depletion of the carrier lipid pool. These enzymes recover the carrier lipid but cleave distinct lipid-linked precursors to do so.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":" ","pages":"e0371024"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.03710-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated. We recently reported that in the bacterium Bacillus subtilis, the stress-response sigma factor SigM and its cognate anti-sigma factor complex respond to changes in the free UndP pool. When levels are low, SigM activates genes that increase flux through the essential cell wall synthesis pathway, promote the recycling of the lipid carrier, and liberate the carrier from other polymer pathways. Here, we report that two additional enzymes under SigM control help maintain the free pool of UndP. One, UshA (YqjL), resembles alpha-beta hydrolases and liberates UndP from undecaprenyl-monophosphate-linked sugars. The other, UpsH (YpbG), resembles metallophosphoesterases and releases UndP from undecaprenyl-diphosphate-linked wall teichoic acids polymers but not lipid-linked peptidoglycan precursors. UshA becomes critical for growth when UndP-linked sugars are sequestered, and the carrier lipid pool is depleted. Similarly, UpsH becomes essential for viability when UndPP-linked intermediates accumulate. Mutations in the predicted catalytic residues of both putative hydrolases abrogate their function arguing that they act directly to release UndP. These findings define two new enzymes that liberate the carrier lipid from UndP- and UndPP-linked intermediates and bolster the model that the SigM stress-response pathway maintains the UndP pool and prioritizes its use for peptidoglycan synthesis.IMPORTANCEMotivated by the success of naturally occurring glycopeptide antibiotics like vancomycin, one arm of recent antibiotic discovery efforts has focused on compounds that bind lipid-linked precursors used to build extracytoplasmic polymers. Trapping these precursors depletes the universal carrier lipid undecaprenyl-phosphate, which is required for the synthesis of virtually all surface polymers, including peptidoglycan. Understanding how cells respond to this stress to restore the carrier lipid pool is critical to identifying effective drugs. Here, we report the identification of two new enzymes that are produced in response to the depletion of the carrier lipid pool. These enzymes recover the carrier lipid but cleave distinct lipid-linked precursors to do so.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
期刊最新文献
Exploring the interaction between endornavirus and Sclerotinia sclerotiorum: mechanisms of phytopathogenic fungal virulence and antivirus. HSP90 interacts with VP37 to facilitate the cell-to-cell movement of broad bean wilt virus 2. Large diversity in the O-chain biosynthetic cluster within populations of Pelagibacterales. Microbiota does not influence tumor development in two models of heritable cancer. Gene regulatory network resource aids in predicting trans-acting regulators of biosynthetic gene clusters in Aspergillus fumigatus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1