Natural history progression of MRI brain volumetrics in type II late-infantile and juvenile GM1 gangliosidosis patients.

IF 3.7 2区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Molecular genetics and metabolism Pub Date : 2025-01-19 DOI:10.1016/j.ymgme.2025.109025
Josephine Kolstad, Christopher Zoppo, Jean M Johnston, Precilla D'Souza, Anna Luisa Kühn, Zeynep Vardar, Ahmet Peker, Asma Hader, Hakki Celik, Connor J Lewis, Clifford Lindsay, Zubir S Rentiya, Catherine Lebel, Srinivasan Vedantham, Behroze Vachha, Heather L Gray-Edwards, Maria T Acosta, Cynthia J Tifft, Mohammed Salman Shazeeb
{"title":"Natural history progression of MRI brain volumetrics in type II late-infantile and juvenile GM1 gangliosidosis patients.","authors":"Josephine Kolstad, Christopher Zoppo, Jean M Johnston, Precilla D'Souza, Anna Luisa Kühn, Zeynep Vardar, Ahmet Peker, Asma Hader, Hakki Celik, Connor J Lewis, Clifford Lindsay, Zubir S Rentiya, Catherine Lebel, Srinivasan Vedantham, Behroze Vachha, Heather L Gray-Edwards, Maria T Acosta, Cynthia J Tifft, Mohammed Salman Shazeeb","doi":"10.1016/j.ymgme.2025.109025","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>GM1 gangliosidosis is a rare lysosomal storage disorder characterized by the accumulation of GM1 gangliosides in neuronal cells, resulting in severe neurodegeneration. Currently, limited data exists on the brain volumetric changes associated with this disease. This study focuses on the late-infantile and juvenile subtypes of type II GM1 gangliosidosis, aiming to quantify brain volumetric characteristics to track disease progression.</p><p><strong>Methods: </strong>Brain volumetric analysis was conducted on 56 MRI scans from 24 type II GM1 patients (8 late-infantile and 16 juvenile) and 19 healthy controls over multiple time points. The analysis included the use of semi-automated segmentation of the whole brain, ventricles, cerebellum, corpus callosum, thalamus, caudate, and lentiform nucleus. A generalized linear model was used to compare the volumetric measurements between the patient groups and healthy controls, accounting for age as a confounding factor.</p><p><strong>Results: </strong>Both late-infantile and juvenile GM1 patients exhibited significant whole-brain atrophy compared to healthy controls, even after adjusting for age. Notably, the late-infantile subtype displayed more pronounced atrophy in the cerebellum, thalamus, and corpus callosum compared to the juvenile subtype. Both late-infantile and juvenile subtypes showed significantly higher ventricular volumes and a significant reduction in all other structure volumes compared to the healthy controls. The volumetric measurements also correlated well with disease severity based on clinical metrics.</p><p><strong>Conclusions: </strong>The findings underscore the distinct brain volumetrics of the late-infantile and juvenile subtypes of GM1 gangliosidosis compared to healthy controls. These quantifications can be used as reliable imaging biomarkers to track disease progression and evaluate responses to therapeutic interventions.</p>","PeriodicalId":18937,"journal":{"name":"Molecular genetics and metabolism","volume":"144 3","pages":"109025"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular genetics and metabolism","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ymgme.2025.109025","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: GM1 gangliosidosis is a rare lysosomal storage disorder characterized by the accumulation of GM1 gangliosides in neuronal cells, resulting in severe neurodegeneration. Currently, limited data exists on the brain volumetric changes associated with this disease. This study focuses on the late-infantile and juvenile subtypes of type II GM1 gangliosidosis, aiming to quantify brain volumetric characteristics to track disease progression.

Methods: Brain volumetric analysis was conducted on 56 MRI scans from 24 type II GM1 patients (8 late-infantile and 16 juvenile) and 19 healthy controls over multiple time points. The analysis included the use of semi-automated segmentation of the whole brain, ventricles, cerebellum, corpus callosum, thalamus, caudate, and lentiform nucleus. A generalized linear model was used to compare the volumetric measurements between the patient groups and healthy controls, accounting for age as a confounding factor.

Results: Both late-infantile and juvenile GM1 patients exhibited significant whole-brain atrophy compared to healthy controls, even after adjusting for age. Notably, the late-infantile subtype displayed more pronounced atrophy in the cerebellum, thalamus, and corpus callosum compared to the juvenile subtype. Both late-infantile and juvenile subtypes showed significantly higher ventricular volumes and a significant reduction in all other structure volumes compared to the healthy controls. The volumetric measurements also correlated well with disease severity based on clinical metrics.

Conclusions: The findings underscore the distinct brain volumetrics of the late-infantile and juvenile subtypes of GM1 gangliosidosis compared to healthy controls. These quantifications can be used as reliable imaging biomarkers to track disease progression and evaluate responses to therapeutic interventions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular genetics and metabolism
Molecular genetics and metabolism 生物-生化与分子生物学
CiteScore
5.90
自引率
7.90%
发文量
621
审稿时长
34 days
期刊介绍: Molecular Genetics and Metabolism contributes to the understanding of the metabolic and molecular basis of disease. This peer reviewed journal publishes articles describing investigations that use the tools of biochemical genetics and molecular genetics for studies of normal and disease states in humans and animal models.
期刊最新文献
Imaging improvement in acid sphingomyelinase deficiency on enzyme replacement therapy. High precision newborn screening for mucopolysaccharidosis type I by enzymatic activity followed by endogenous, non-reducing end glycosaminoglycan analysis. Predicting liver fibrosis in Gaucher disease: Investigation of contributors and development of a clinically applicable Gaucher liver fibrosis score. Digital microfluidic platform for dried blood spot newborn screening of lysosomal storage diseases in Campania region (Italy): Findings from the first year pilot project. WORLDSymposium™ 2025 Introduction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1