Isolation and spectroscopic characterization of anticancer phytochemicals from Artemisia laciniata: a combined experimental and theoretical investigation using ADMET analysis and in silico molecular docking simulation against key cancer targets.

IF 1.9 3区 化学 Q3 CHEMISTRY, APPLIED Natural Product Research Pub Date : 2025-01-28 DOI:10.1080/14786419.2025.2457021
Nisar A Dangroo, Manzoor A Rather, Jasvinder Singh, Aadil Khursheed, Jan Mohammad Mir, Aabid Hussain Shalla
{"title":"Isolation and spectroscopic characterization of anticancer phytochemicals from <i>Artemisia laciniata</i>: a combined experimental and theoretical investigation using ADMET analysis and in silico molecular docking simulation against key cancer targets.","authors":"Nisar A Dangroo, Manzoor A Rather, Jasvinder Singh, Aadil Khursheed, Jan Mohammad Mir, Aabid Hussain Shalla","doi":"10.1080/14786419.2025.2457021","DOIUrl":null,"url":null,"abstract":"<p><p><i>Artemisia laciniata</i>, a high-altitude medicinal herb, possesses diverse therapeutic properties. This study conducted a comprehensive phytochemical analysis of the whole plant, leading to the isolation of 15 secondary metabolites (1-15) across various classes: flavonoids (<b>1-6</b>), triterpenoids (<b>7</b>, <b>8</b>), sesquiterpenoid lactones (<b>9</b>, <b>10</b>) and furanocoumarins (<b>11</b>, <b>12</b>) along with three steroids (<b>13-15</b>). These compounds were characterized using NMR (<sup>1</sup>HNMR,<sup>13</sup>C NMR, 2D NMR), IR, HRMS and UV-VIS. All were reported for the first time from this plant, with compound 10 being a novel natural product. In-vitro antitumor activity was evaluated against lung (A549), colon (HCT116), prostate (PC3) and breast (T47D) cancer cell lines. Compounds <b>3</b>, <b>4</b>, <b>6</b>, <b>7</b>, <b>8</b> and <b>10</b> demonstrated significant antitumor activity, with compounds <b>3</b>, <b>7</b> and <b>8</b> exhibiting IC<sub>50</sub> values 8 and 28 µM. In silico molecular docking and ADMET analysis were conducted to assess pharmacokinetics and pharmacodynamics, revealing strong binding affinities of compounds <b>3, 6,</b> and <b>7,</b> particularly with PD-L1, highlighting their potential to target multiple cancer-related pathways. This study concludes that A. laciniata contains potent anticancer phytochemicals that target key proteins involved in cancer development, as demonstrated by MTT assay results.</p>","PeriodicalId":18990,"journal":{"name":"Natural Product Research","volume":" ","pages":"1-9"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/14786419.2025.2457021","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Artemisia laciniata, a high-altitude medicinal herb, possesses diverse therapeutic properties. This study conducted a comprehensive phytochemical analysis of the whole plant, leading to the isolation of 15 secondary metabolites (1-15) across various classes: flavonoids (1-6), triterpenoids (7, 8), sesquiterpenoid lactones (9, 10) and furanocoumarins (11, 12) along with three steroids (13-15). These compounds were characterized using NMR (1HNMR,13C NMR, 2D NMR), IR, HRMS and UV-VIS. All were reported for the first time from this plant, with compound 10 being a novel natural product. In-vitro antitumor activity was evaluated against lung (A549), colon (HCT116), prostate (PC3) and breast (T47D) cancer cell lines. Compounds 3, 4, 6, 7, 8 and 10 demonstrated significant antitumor activity, with compounds 3, 7 and 8 exhibiting IC50 values 8 and 28 µM. In silico molecular docking and ADMET analysis were conducted to assess pharmacokinetics and pharmacodynamics, revealing strong binding affinities of compounds 3, 6, and 7, particularly with PD-L1, highlighting their potential to target multiple cancer-related pathways. This study concludes that A. laciniata contains potent anticancer phytochemicals that target key proteins involved in cancer development, as demonstrated by MTT assay results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Natural Product Research
Natural Product Research 化学-医药化学
CiteScore
5.10
自引率
9.10%
发文量
605
审稿时长
2.1 months
期刊介绍: The aim of Natural Product Research is to publish important contributions in the field of natural product chemistry. The journal covers all aspects of research in the chemistry and biochemistry of naturally occurring compounds. The communications include coverage of work on natural substances of land and sea and of plants, microbes and animals. Discussions of structure elucidation, synthesis and experimental biosynthesis of natural products as well as developments of methods in these areas are welcomed in the journal. Finally, research papers in fields on the chemistry-biology boundary, eg. fermentation chemistry, plant tissue culture investigations etc., are accepted into the journal. Natural Product Research issues will be subtitled either ""Part A - Synthesis and Structure"" or ""Part B - Bioactive Natural Products"". for details on this , see the forthcoming articles section. All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer review is single blind and submission is online via ScholarOne Manuscripts.
期刊最新文献
Phenolic constituents from the roots of Strobilanthes sarcorrhiza C. Ling and their bioactivity. Therapeutic potential of Brazilian green propolis and oregano (Origanum vulgare) extracts in collagen hydrogel for pressure ulcer repair: an experimental study in an animal model. 1H NMR-based metabolomics study of the lipid profile of argan oil and investigation of possible adulterations in the market of this valuable herbal oil. Integrative dereplication and molecular networking reveal potential antimicrobial agents in Kielmeyera coriacea Mart. Two new flavonoids with antimicrobial activity from the roots of Byttneria aspera Colebr. ex Wall (Malvaceae)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1