Linling Ke, Qian Xie, Xiaoman Wang, Yuanhang Gong, Min Li
{"title":"Proximity Ligation Assay to Study Oncogene-Derived Transcription-Replication Conflicts.","authors":"Linling Ke, Qian Xie, Xiaoman Wang, Yuanhang Gong, Min Li","doi":"10.3791/67537","DOIUrl":null,"url":null,"abstract":"<p><p>Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation. In this study, we directly visualize TRCs using a proximity ligation assay (PLA), leveraging antibodies specific to PCNA and phosphorylated CTD of RNA polymerase II. This approach allows precise measurement of TRCs between replication and transcription processes mediated by RNA polymerase II. The method is further enhanced through DNA primers conjugated covalently to these antibodies, coupled with PCR amplification using fluorescent probes, providing a highly sensitive and specific means of detecting endogenous TRCs. Fluorescence microscopy enables the visualization of these conflicts, offering a powerful tool to study genome instability mechanisms associated with cancer. This technique addresses the gap in direct TRC visualization, allowing for a more comprehensive analysis and understanding of the underlying processes driving genome instability in cells.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 215","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67537","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation. In this study, we directly visualize TRCs using a proximity ligation assay (PLA), leveraging antibodies specific to PCNA and phosphorylated CTD of RNA polymerase II. This approach allows precise measurement of TRCs between replication and transcription processes mediated by RNA polymerase II. The method is further enhanced through DNA primers conjugated covalently to these antibodies, coupled with PCR amplification using fluorescent probes, providing a highly sensitive and specific means of detecting endogenous TRCs. Fluorescence microscopy enables the visualization of these conflicts, offering a powerful tool to study genome instability mechanisms associated with cancer. This technique addresses the gap in direct TRC visualization, allowing for a more comprehensive analysis and understanding of the underlying processes driving genome instability in cells.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.