Response of an obligate CAM plant to competition and increased watering intervals.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES Physiologia plantarum Pub Date : 2025-01-01 DOI:10.1111/ppl.70093
Jingjing Fan, Zhengyu Wang, Chengyi Tu, Zhenglin Lv, Shuting Liu, Ying Fan
{"title":"Response of an obligate CAM plant to competition and increased watering intervals.","authors":"Jingjing Fan, Zhengyu Wang, Chengyi Tu, Zhenglin Lv, Shuting Liu, Ying Fan","doi":"10.1111/ppl.70093","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change has exacerbated precipitation variability, profoundly impacting vegetation dynamics and community structures in arid ecosystems. There remains a notable knowledge gap regarding the ecological effects of altered precipitation on crassulacean acid metabolism (CAM) plants and their interactions with other photosynthetic types. This study investigated the response of the typical obligate CAM plant Orostachys fimbriata to extended watering intervals (WI4-WI8) and various competitive patterns (M<sub>1</sub>-M<sub>4</sub>) with the C<sub>3</sub> grass Melilotus officinalis and the C<sub>4</sub> grass Setaria viridis through greenhouse experiments. The results showed that: (1) In species mixtures, CAM plants had slightly reduced the total biomass (TB) compared to monocultures, yet maintained competitiveness by increasing the root-to-shoot biomass (R:S) ratio, stabilizing plant height, and sustaining their photosynthetic rates. (2) As watering intervals increased, CAM plants adapted by further elevating the R:S ratio, reducing height, and decreasing aboveground biomass. However, their height, CO<sub>2</sub> assimilation rate, and above- and below-ground biomass were significantly suppressed, particularly when coexisting with C<sub>4</sub> plants. More extreme watering regime caused a 47.6% decrease in TB of CAM plants in M<sub>4</sub>, while C<sub>3</sub> and C<sub>4</sub> grasses declined by 53.2% and 37.8%, respectively. (3) Given the predicted extension of drought intervals and the intensification of individual rainfall events under future climate conditions, the competitive pressure from C<sub>4</sub> plants with high drought tolerance and resource acquisition advantages may limit the expansion potential of CAM plants in drylands. This study enhances the understanding of adaptive mechanisms of CAM plants competing and coexisting with grasses under variable environments, providing scientific bases for predicting arid ecosystem dynamics.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70093"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70093","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change has exacerbated precipitation variability, profoundly impacting vegetation dynamics and community structures in arid ecosystems. There remains a notable knowledge gap regarding the ecological effects of altered precipitation on crassulacean acid metabolism (CAM) plants and their interactions with other photosynthetic types. This study investigated the response of the typical obligate CAM plant Orostachys fimbriata to extended watering intervals (WI4-WI8) and various competitive patterns (M1-M4) with the C3 grass Melilotus officinalis and the C4 grass Setaria viridis through greenhouse experiments. The results showed that: (1) In species mixtures, CAM plants had slightly reduced the total biomass (TB) compared to monocultures, yet maintained competitiveness by increasing the root-to-shoot biomass (R:S) ratio, stabilizing plant height, and sustaining their photosynthetic rates. (2) As watering intervals increased, CAM plants adapted by further elevating the R:S ratio, reducing height, and decreasing aboveground biomass. However, their height, CO2 assimilation rate, and above- and below-ground biomass were significantly suppressed, particularly when coexisting with C4 plants. More extreme watering regime caused a 47.6% decrease in TB of CAM plants in M4, while C3 and C4 grasses declined by 53.2% and 37.8%, respectively. (3) Given the predicted extension of drought intervals and the intensification of individual rainfall events under future climate conditions, the competitive pressure from C4 plants with high drought tolerance and resource acquisition advantages may limit the expansion potential of CAM plants in drylands. This study enhances the understanding of adaptive mechanisms of CAM plants competing and coexisting with grasses under variable environments, providing scientific bases for predicting arid ecosystem dynamics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
期刊最新文献
L-DOPA promotes cadmium tolerance and modulates iron deficiency genes in Arabidopsis thaliana. Differences in drought avoidance rather than differences in the fast versus slow growth spectrum explain distributions of two Asclepias species. The Malectin-like kinase gene MdMDS1 negatively regulates the resistance of Pyrus betulifolia to Valsa canker by promoting the expression of PbePME1. Genetic improvement of low-lignin poplars: a new strategy based on molecular recognition, chemical reactions and empirical breeding. The soil application of a plant-derived protein hydrolysate speeds up selectively the ripening-specific processes in table grape.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1