The role of the jasmonate signalling transcription factors MYC2/3/4 in circadian clock-mediated regulation of immunity in Arabidopsis.

Rageema Joseph, Jessica L Odendaal, Robert A Ingle, Laura C Roden
{"title":"The role of the jasmonate signalling transcription factors MYC2/3/4 in circadian clock-mediated regulation of immunity in Arabidopsis.","authors":"Rageema Joseph, Jessica L Odendaal, Robert A Ingle, Laura C Roden","doi":"10.1098/rstb.2023.0338","DOIUrl":null,"url":null,"abstract":"<p><p>Plants are exposed to pathogens at specific, yet predictable times of the day-night cycle. In Arabidopsis, the circadian clock influences temporal differences in susceptibility to the necrotrophic pathogen <i>Botrytis cinerea</i>. The jasmonic acid (JA) pathway regulates immune responses against <i>B. cinerea</i>. The paralogous basic helix-loop-helix transcription factors MYC2, MYC3 and MYC4 are primary regulators of the JA pathway, but their role in regulating temporal variation in immunity is untested. This study aimed to investigate the roles of the MYC transcription factors in the temporal defence response to <i>B. cinerea</i>. We inoculated leaves from wild-type, <i>myc</i> single-, double- and triple-knockout mutants, and lines overexpressing <i>MYC2</i>, <i>MYC3</i> or <i>MYC4</i>, with <i>B. cinerea</i> at two times of day in constant light, and compared lesion sizes. The presence of MYC2, MYC3 or MYC4 alone was sufficient to maintain temporal variation in susceptibility, but this was abolished in the <i>myc234</i> triple-knockout mutant. Constitutive expression of <i>MYC2</i>, <i>MYC3</i> or <i>MYC4</i> abolished time-of-day differences in susceptibility. The data suggest that MYC2, MYC3 and MYC4 function redundantly in regulating temporal defence responses against <i>B. cinerea</i> and are a point of convergence between the JA pathway and the circadian clock in Arabidopsis.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1918","pages":"20230338"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753874/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2023.0338","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plants are exposed to pathogens at specific, yet predictable times of the day-night cycle. In Arabidopsis, the circadian clock influences temporal differences in susceptibility to the necrotrophic pathogen Botrytis cinerea. The jasmonic acid (JA) pathway regulates immune responses against B. cinerea. The paralogous basic helix-loop-helix transcription factors MYC2, MYC3 and MYC4 are primary regulators of the JA pathway, but their role in regulating temporal variation in immunity is untested. This study aimed to investigate the roles of the MYC transcription factors in the temporal defence response to B. cinerea. We inoculated leaves from wild-type, myc single-, double- and triple-knockout mutants, and lines overexpressing MYC2, MYC3 or MYC4, with B. cinerea at two times of day in constant light, and compared lesion sizes. The presence of MYC2, MYC3 or MYC4 alone was sufficient to maintain temporal variation in susceptibility, but this was abolished in the myc234 triple-knockout mutant. Constitutive expression of MYC2, MYC3 or MYC4 abolished time-of-day differences in susceptibility. The data suggest that MYC2, MYC3 and MYC4 function redundantly in regulating temporal defence responses against B. cinerea and are a point of convergence between the JA pathway and the circadian clock in Arabidopsis.This article is part of the Theo Murphy meeting issue 'Circadian rhythms in infection and immunity'.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.80
自引率
1.60%
发文量
365
审稿时长
3 months
期刊介绍: The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas): Organismal, environmental and evolutionary biology Neuroscience and cognition Cellular, molecular and developmental biology Health and disease.
期刊最新文献
Changes of division of labour along the eusociality spectrum in termites, with comparisons to multicellularity. Cultural evolution, social ratcheting and the evolution of human division of labour. Division of labour as key driver of social evolution. Division of labour during honeybee colony defence: poetic and scientific views. Division of labour in colony defence in a clonal ant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1