Regulation of trophectoderm morphogenesis by small GTPase RHOA through HIPPO signaling-dependent and -independent mechanisms in mouse preimplantation development.

IF 2.2 3区 生物学 Q4 CELL BIOLOGY Differentiation Pub Date : 2025-01-03 DOI:10.1016/j.diff.2025.100835
Yusuke Marikawa, Vernadeth B Alarcon
{"title":"Regulation of trophectoderm morphogenesis by small GTPase RHOA through HIPPO signaling-dependent and -independent mechanisms in mouse preimplantation development.","authors":"Yusuke Marikawa, Vernadeth B Alarcon","doi":"10.1016/j.diff.2025.100835","DOIUrl":null,"url":null,"abstract":"<p><p>The trophectoderm (TE) is the first tissue to differentiate during the preimplantation development of the mammalian embryo. It forms the outer layer of the blastocyst and is responsible for generating the blastocoel, a fluid-filled cavity whose expansion is essential for successful hatching and implantation. Here, we investigated the role of the small GTPase RHOA in the morphogenesis of the TE, particularly its relationship with HIPPO signaling, using mouse embryos as a model. Inhibition of RHOA resulted in the failure to form a blastocoel and significantly altered the expression of numerous genes. Transcriptomic analysis revealed that 330 genes were down-regulated and 168 genes were up-regulated by more than two-fold. Notably, 98.4% of these transcriptional changes were reversed by simultaneous inhibition of LATS kinases, indicating that the transcriptional influence of RHOA is primarily mediated through HIPPO signaling. Many of the down-regulated genes are involved in critical processes of TE morphogenesis, such as apical-basal cell polarization, tight junction formation, and sodium and water transport, suggesting that RHOA supports TE development by enhancing the expression of morphogenesis-related genes through HIPPO signaling, specifically via TEAD transcription factors. However, RHOA inhibition also disrupted apical-basal polarity and tight junctions, effects that were not restored by LATS inhibition, pointing to additional HIPPO signaling-independent mechanisms by which RHOA controls TE morphogenesis. Furthermore, RHOA inhibition impaired cell viability at the late blastocyst stage, with partial rescue observed upon LATS inhibition, suggesting that RHOA maintains cell survival through both HIPPO signaling-dependent and -independent pathways. A deeper knowledge of the molecular mechanisms governing TE morphogenesis, including blastocoel expansion and cell viability, could significantly advance assisted reproductive technologies aimed at producing healthy blastocysts.</p>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":"141 ","pages":"100835"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.diff.2025.100835","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The trophectoderm (TE) is the first tissue to differentiate during the preimplantation development of the mammalian embryo. It forms the outer layer of the blastocyst and is responsible for generating the blastocoel, a fluid-filled cavity whose expansion is essential for successful hatching and implantation. Here, we investigated the role of the small GTPase RHOA in the morphogenesis of the TE, particularly its relationship with HIPPO signaling, using mouse embryos as a model. Inhibition of RHOA resulted in the failure to form a blastocoel and significantly altered the expression of numerous genes. Transcriptomic analysis revealed that 330 genes were down-regulated and 168 genes were up-regulated by more than two-fold. Notably, 98.4% of these transcriptional changes were reversed by simultaneous inhibition of LATS kinases, indicating that the transcriptional influence of RHOA is primarily mediated through HIPPO signaling. Many of the down-regulated genes are involved in critical processes of TE morphogenesis, such as apical-basal cell polarization, tight junction formation, and sodium and water transport, suggesting that RHOA supports TE development by enhancing the expression of morphogenesis-related genes through HIPPO signaling, specifically via TEAD transcription factors. However, RHOA inhibition also disrupted apical-basal polarity and tight junctions, effects that were not restored by LATS inhibition, pointing to additional HIPPO signaling-independent mechanisms by which RHOA controls TE morphogenesis. Furthermore, RHOA inhibition impaired cell viability at the late blastocyst stage, with partial rescue observed upon LATS inhibition, suggesting that RHOA maintains cell survival through both HIPPO signaling-dependent and -independent pathways. A deeper knowledge of the molecular mechanisms governing TE morphogenesis, including blastocoel expansion and cell viability, could significantly advance assisted reproductive technologies aimed at producing healthy blastocysts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Differentiation
Differentiation 生物-发育生物学
CiteScore
4.10
自引率
3.40%
发文量
38
审稿时长
51 days
期刊介绍: Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal. The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest. The principal subject areas the journal covers are: • embryonic patterning and organogenesis • human development and congenital malformation • mechanisms of cell lineage commitment • tissue homeostasis and oncogenic transformation • establishment of cellular polarity • stem cell differentiation • cell reprogramming mechanisms • stability of the differentiated state • cell and tissue interactions in vivo and in vitro • signal transduction pathways in development and differentiation • carcinogenesis and cancer • mechanisms involved in cell growth and division especially relating to cancer • differentiation in regeneration and ageing • therapeutic applications of differentiation processes.
期刊最新文献
NOTCH1, 2, and 3 receptors enhance osteoblastogenesis of mesenchymal C3H10T1/2 cells and inhibit this process in preosteoblastic MC3T3-E1 cells. Delamination of chick cephalic neural crest cells requires an MMP14-dependent downregulation of Cadherin-6B. SMAD2/3 signaling determines the colony architecture in a hydrozoan, Dynamena pumila. Regulation of trophectoderm morphogenesis by small GTPase RHOA through HIPPO signaling-dependent and -independent mechanisms in mouse preimplantation development. WNT16 primer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1